We are testing a new system for linking grants to scientists.
The funding information displayed below comes from the
NIH Research Portfolio Online Reporting Tools and the
NSF Award Database.
The grant data on this page is limited to grants awarded in the United States and is thus partial. It can nonetheless be used to understand how funding patterns influence mentorship networks and vice-versa, which has deep implications on how research is done.
You can help! If you notice any innacuracies, please
sign in and mark grants as correct or incorrect matches.
Sign in to see low-probability grants and correct any errors in linkage between grants and researchers.
High-probability grants
According to our matching algorithm, Robert O. Blaustein is the likely recipient of the following grants.
Years |
Recipients |
Code |
Title / Keywords |
Matching score |
1996 — 2000 |
Blaustein, Robert O |
K08Activity Code Description: To provide the opportunity for promising medical scientists with demonstrated aptitude to develop into independent investigators, or for faculty members to pursue research aspects of categorical areas applicable to the awarding unit, and aid in filling the academic faculty gap in these shortage areas within health profession's institutions of the country. |
Conformational Changes Associated With K+ Channel Gating @ Massachusetts General Hospital |
0.903 |
2003 — 2006 |
Blaustein, Robert O |
R01Activity Code Description: To support a discrete, specified, circumscribed project to be performed by the named investigator(s) in an area representing his or her specific interest and competencies. |
Structural Analysis of Voltage-Gated Potassium Channels
DESCRIPTION (provided by applicant): Potassium channels are specialized integral membrane proteins endowed with a remarkable capacity to accommodate the highly selective passage of potassium ions across cells. Some have the added ability to open and close in response to small changes in transmembrane voltage, and it is these voltage-gated (Kv) potassium channels that are the focus of this proposal. These proteins play crucial roles in a number of physiologic processes ranging from the propagation of information in the nervous system to the maintenance of a normal heart rhythm, and inherited mutations in many of them lead to forms of epilepsy, paralysis, and cardiac arrhythmias. The structures of some parts of Kv channels and their auxiliary subunits are now well understood, yet despite detailed study for over a decade, little is known about the construction of the voltage sensing region of these channels, or about the overall architecture of hetermultimeric channels. In light of this gap, a new method is introduced to complement established techniques of molecular biology and electrophysiology--the use of tethered quaternary ammonium blockers as molecular tape-measures. These compounds will be targeted to intracellular and extracellular regions of two classes of K+ channels: the prototypic voltage-dependent Shaker channel, and heteromultimeric channels formed from the co-assembly of Shaker-like subunits with minK-related peptides (MiRPs). The two specific aims, (1) mapping the extracellular portion of Shaker's gating module, and (2) probing the structure of MiRP-associated channels, will be instrumental in fulfilling the project's long-term objectives of creating a detailed physical map of the gating module of a Kv channel, and determining how the different parts of a Kv channel are molded together.
|
0.901 |