cached image
We are testing a new system for linking grants to scientists.
The funding information displayed below comes from the
NIH Research Portfolio Online Reporting Tools and the
NSF Award Database.
The grant data on this page is limited to grants awarded in the United States and is thus partial. It can nonetheless be used to understand how funding patterns influence mentorship networks and vice-versa, which has deep implications on how research is done.
You can help! If you notice any innacuracies, please
sign in and mark grants as correct or incorrect matches.
Sign in to see low-probability grants and correct any errors in linkage between grants and researchers.
High-probability grants
According to our matching algorithm, W Jon Lederer is the likely recipient of the following grants.
Years |
Recipients |
Code |
Title / Keywords |
Matching score |
2017 — 2018 |
Jafri, Mohsin Saleet Lederer, W. Jonathan Mannella, Carmen A. |
U01Activity Code Description: To support a discrete, specified, circumscribed project to be performed by the named investigator(s) in an area representing his or her specific interest and competencies. |
Multiscale Spatiotemporal Modeling of Cardiac Mitochondria @ University of Maryland Baltimore
DESCRIPTION (provided by applicant): Mitochondria are abundant and critically important subcellular organelles whose organization and ultrastructure are complex but unexplained. This multi-PI multiscale modeling proposal seeks to use a combination of mathematical modeling and biological experiments to test the overall hypothesis that the nanoscopic ultrastructure of cardiac mitochondria accounts for the ultimate success of mitochondrial function. Mitochondria in rat cardiac ventricular myocytes will be used in the planned modeling and biological experiments. Our preliminary experiments and published data indicate that the planned work is feasible and that the three PIs can succeed in this ambitious and challenging proposal. Freshly isolated rat cardiac ventricular myocytes and those in short-term (1-3 days) culture will be prepared in the Lederer lab and imaged with electron microscope (EM) tomography by the Mannella team and analyzed quantitatively and interactively by the three PIs. Living cells will be examined by the Lederer team using confocal and super-resolution Stochastic Optical Reconstruction Microscopy (STORM). The quantitative spatial and functional data obtained from EM tomography and live cell imaging will be used to inform and constrain the multi-scale 3D modeling of mitochondria centered in the Jafri lab. The planned iterative approach to biological experiments and mathematical modeling will enable this investigation to define the structural basis for mitochondrial function for the first time. Finally, the proposed investigation seeks to include modeling of mitochondria under control conditions, when mitochondria are stressed by simple interventions and when mitochondria are altered by pressure-overload heart failure. This work therefore will not only provide fundamental new information on how mitochondria function but will also lay the foundation for novel therapies in mitochondrially involved diseases.
|
0.908 |
2019 — 2021 |
Lederer, W. Jonathan Ward, Christopher William |
R01Activity Code Description: To support a discrete, specified, circumscribed project to be performed by the named investigator(s) in an area representing his or her specific interest and competencies. |
Chemo-Mechanical Signaling in Atrial Myocytes @ University of Maryland Baltimore
Atrial myocyte cell biology will be examined in isolated single cells in vitro and mice in vivo to characterize quantitatively how chemo-mechanical signaling works in health and disease. This signaling pathway is activated by changes in myocyte shape as happens when the atria fill with blood, and myocytes stretch, during diastolic filling. Using extremely high temporal and spatial resolution imaging the PIs will examine how chemo-mechanical signaling contributes to subcellular changes in Ca2+, excitation-contraction coupling to influence both electrical and Ca2+ instability. Preliminary results suggest that newly identified large axial tubules in atrial myocytes (discovered by the PIs) along with Ca2+ release super-hubs play a role in a unique Ca2+ signaling system found in atrial myocytes. Furthermore, the mechano-chemo X-ROS pathway discovered by the PIs in ventricular myocytes is likely to have a special role to play in atrial myocytes. This signaling pathway links the mechanics of cellular stretch, transmitted through microtubules, to the generation of local subcellular reactive oxygen species (ROS) that likely target multiple Ca2+ signaling proteins such as CaMKII and RyR2. Preliminary results suggest this X-ROS signaling is very active in atrial myocytes and may be linked to the novel structures described by the PIs. The proposed work will identify quantitatively the contributions of the special structures, X-ROS signaling and chemo-mechanical signaling to the normal physiology of atrial myocytes and the contributions to the development of atrial fibrillation (AF). Two very different mouse models of AF will be used along with specific transgenic mice to quantitatively characterize Ca2+ signaling and cellular electrophysiology in atrial myocytes and determine how chemo-mechanical signaling contributes to cellular physiology and pathophysiology. This investigation will provide critically important new information on how atrial myocytes work and fail in health and disease. The likely new discoveries produced by the proposed work will broaden our understanding of atrial cell biology and lay the foundation for innovative, effective and novel therapies for atrial dysfunction and AF.
|
0.908 |