Michael Kharas - US grants
Affiliations: | Memorial Sloan Kettering Cancer Center, Rockville Centre, NY, United States |
We are testing a new system for linking grants to scientists.
The funding information displayed below comes from the NIH Research Portfolio Online Reporting Tools and the NSF Award Database.The grant data on this page is limited to grants awarded in the United States and is thus partial. It can nonetheless be used to understand how funding patterns influence mentorship networks and vice-versa, which has deep implications on how research is done.
You can help! If you notice any innacuracies, please sign in and mark grants as correct or incorrect matches.
High-probability grants
According to our matching algorithm, Michael Kharas is the likely recipient of the following grants.Years | Recipients | Code | Title / Keywords | Matching score |
---|---|---|---|---|
2009 — 2013 | Kharas, Michael | K01Activity Code Description: For support of a scientist, committed to research, in need of both advanced research training and additional experience. |
The Role of the Musashi Family in Hematopoiesis @ Brigham and Women's Hospital DESCRIPTION (provided by applicant): The regulation of the pleiotropic capabilities of hematopoietic stem cells (HSC) to self-renew while maintaining hematopoietic homeostasis in vertebrates is not well understood. Post-transcriptional modulators are recently highlighted as arbiters for hematopoietic self-renewal and cell fate decisions. We hypothesize that the "Musashi" genes MSI1 and MSI2 regulate hematopoietic stem cell function, and when dysregulated contribute to stem cell disorders. MSI1 and MSI2 are closely related RNA-binding proteins that influence cell fate determination in neuronal development by modulating Notch signaling. Preliminary data indicate that MSI family members play an important role in hematopoietic stem and progenitor development. The research described in this 5-year proposal outlines specific aims designed to investigate the in vivo effects of loss and gain of function of Msi genes. This proposal creates two novel tools to study Msi function: (1) a conditional knockouts for the Msi family (2) a knockin tet-inducible system for the Msi family. These two powerful systems will examine the specific role for Msi in hematopoiesis and stem cell function. The Specific Aim 1 will utilize genetic strategies to assess loss of function of Msi in the murine hematopoietic system. Specific Aim 2 will assess the role of Msi dysregulation through use of inducible overexpression of MSI1 or MSI2. Expression of an inducible promoter provides distinct advantages over the retroviral transplant models where differences in expression levels may influence biological effects and avoids possible artifacts from retroviral integrations. Aim 3 will focus on mechanisms and targets of Musashi that enable its regulatory function in the HSC compartment and in myeloid differentiation. More specifically, Notch and beta-catenin signaling is central to maintaining proper differentiation in the blood. Finally, this proposal application will provide insights into Msi regulation of these vital developmental pathways in the context of hemotopoietic stem cell function. PUBLIC HEALTH RELEVANCE: Stem cell disorders comprise a large group of myelodysplastic syndromes, inherited and acquired bone failure syndromes such as aplastic anemias. This proposal will provide enhanced understanding of regulators of stem cell function and may identify novel therapeutic targets for stem cell diseases. |
0.955 |
2014 — 2018 | Kharas, Michael | R01Activity Code Description: To support a discrete, specified, circumscribed project to be performed by the named investigator(s) in an area representing his or her specific interest and competencies. |
Uncovering the Role For Msi2 in Hematopoietic Stem Cells @ Sloan-Kettering Inst Can Research DESCRIPTION (provided by applicant): Hematopoietic stem cell (HSC) numbers are carefully maintained by switching from symmetric to asymmetric cell divisions. A complex program made of genetic and epigenetic mechanisms that maintain normal HSCs can become dysregulated in hematopoietic disorders and malignancies. Myelodysplastic syndromes (MDS) are characterized as a clonally derived set of heterogeneous diseases demonstrating defective hematopoietic differentiation. Taken together with recent discoveries in the genetic landscape of MDS, the etiology of this disease is considered to be driven by an HSC or an early myeloid progenitor. Thus, dysregulation of cell fate decisions including the balance of asymmetric and symmetric cell division could explain how certain lineages are blocked or why self-renewal is altered. RNA binding proteins in the Msi family have been shown to be important for the switch between symmetric and asymmetric cell division in germ and tissue stem cell function, neural cell differentiation and cell fate determination. Recent studies have implicated MSI2 as a regulator of HSC function and this proposal utilizes Msi2 conditional knockouts and gain of function approaches to dissect the precise role for MSI2 in controlling asymmetric division, self-renewal and cell fate determination. Moreover, this proposal incorporates high throughput sequencing UV-crosslinking immunoprecipitation to identify global RNA targets (HITS-CLIP) that will be used to elucidate the direct mechanism for MSI2 in hematopoietic cells. Furthermore, our global genetic approaches have already uncovered how regulation of translation alters several developmental pathways. MSI2 has also been recently shown to be dysregulated in MDS within low- risk patients, expressing below normal levels and within high-risk patients demonstrating elevated MSI2 expression. This proposal utilizes the NUP98-HOXD13 MDS murine model combined with novel gain and loss of function MSI2 mouse models to study the initial stages of MDS within the HSC. We suggest that MSI2 dysregulation contributes to the biology of hematopoietic disorders and thus a deeper understanding of these mechanisms will provide additional therapeutic approaches. |
0.955 |
2015 — 2019 | Kharas, Michael | R01Activity Code Description: To support a discrete, specified, circumscribed project to be performed by the named investigator(s) in an area representing his or her specific interest and competencies. |
Characterizing Msi2 in Leukemia @ Sloan-Kettering Inst Can Research ? DESCRIPTION (provided by applicant): An evolutionary conserved developmental program is carefully maintained in hematopoietic stem cells (HSCs). Genetic alterations and epigenetic mechanisms can alter the balance of normal blood development resulting in hematological malignancies. Our recent studies have identified MUSASHI (MSI2), as an RNA binding protein that controls normal and leukemia self-renewal. Moreover, the MSI family is highly expressed in the most aggressive solid tumors and we have demonstrated that MSI2 expression predicts a worse clinical prognosis in acute myeloid leukemia (AML). We hypothesize that the RNA binding proteins MSI2 controls leukemic stem cell self-renewal and elucidating the mechanism of action for MSI2 in LSCs may provide novel therapeutic strategies in myeloid leukemia. This proposal utilizes Msi2 conditional knockouts and patient samples with AML to dissect the requirement for MSI2 in leukemia self-renewal. Furthermore, our global genetic approaches have already uncovered how regulation of translation alters several epigenetic pathways that are controlled by the MLL-AF9 oncogene. Our studies will examine the direct mRNA targets of MSI2 that control LSC function. Additionally, we will stratify patients based on their MSI2 expression and determine how cytotoxic agents, molecular targeted and epigenetic therapies can be used to improve therapeutic outcomes in AML. |
0.955 |
2017 — 2020 | Kharas, Michael Lai, Eric C [⬀] |
R01Activity Code Description: To support a discrete, specified, circumscribed project to be performed by the named investigator(s) in an area representing his or her specific interest and competencies. |
Molecular and Genetic Analysis of Novel Slicer-Dependent Mirna Pathways in Blood @ Sloan-Kettering Inst Can Research PROJECT ABSTRACT Molecular and genetic analysis of novel Slicer-dependent miRNA pathways in blood Most conserved microRNAs (miRNAs) are generated by a biogenesis pathway that deposits them into an Argonaute effector, guiding them to broad regulatory target networks. Amongst the cohort of four mammalian Argonautes, only Ago2 has catalytic ability to cleave transcripts, an enzymatic activity known as Slicing that underlies experimental RNA interference. Nevertheless, the endogenous biological usage of mammalian Slicing remains largely mysterious. Our previous and ongoing studies provide the unexpected perspective of multiple Slicing-dependent biogenesis strategies that generate both Dicer-independent and Dicer-dependent erythroid miRNAs. These data strongly support our hypothesis that a dominant usage of Ago2 catalysis is to generate specific conserved miRNAs in the blood system. Our extensive preliminary data are the basis of (1) a series of biochemical and genomic experiments to elucidate a novel Slicing-dependent miRNA biogenesis mechanism, (2) genetic studies of novel knockout animals of erythroid, Slicing-dependent miRNAs in normal development, blood homeostasis and leukemia, and (3) molecular genetic analyses that seek to connect dysregulated processes in Ago2-catalytically defective blood system to specific Slicing- dependent miRNAs. These studies will bring new insights on post-transcriptional control of erythroid development, homeostasis, and blood cancer, as well as pinpoint the functional basis of mammalian RNAi to the generation of erythroid-specific miRNAs. |
0.955 |
2018 — 2021 | Kharas, Michael Papapetrou, Eirini [⬀] |
R01Activity Code Description: To support a discrete, specified, circumscribed project to be performed by the named investigator(s) in an area representing his or her specific interest and competencies. |
Identification of Therapeutic Targets For Leukemia Stem Cells in Aml-Ipsc Models @ Icahn School of Medicine At Mount Sinai PROJECT SUMMARY/ABSTRACT Acute Myeloid Leukemia (AML) is a highly aggressive blood cancer with median overall survival of ~1 year. Although most patients respond to treatment with chemotherapy initially, many subsequently relapse. The malignant cells in AML display a hierarchical organization with leukemia stem cells (LSCs) residing in the apex. LSCs are believed to be a prominent source of chemotherapy resistance and AML relapse, because they have distinct biological properties than the bulk AML population and are therefore presumably resistant to most conventional therapies. Thus therapies specifically targeting LSCs could theoretically give more lasting responses or even cures. Although there is substantial evidence for the existence of both murine and human LSCs, significant challenges to their study exist. LSCs are currently defined by their functional properties in mouse or xenotransplantation models. Their similarities to normal hematopoietic stem cells (HSCs), their rarity and the unavailability of specific immunophenotypic markers that distinguish LSCs from the rest of AML cells makes their prospective isolation, study and use in drug discovery challenging. We (Papapetrou laboratory) have pioneered the modeling of myeloid malignancies with induced pluripotent stem cells (iPSCs). We recently derived the first iPSC models of AML (AML-iPSCs). In close collaboration with the Kharas laboratory, we found that the hematopoietic stem/progenitor cells (HSPCs) derived from AML- iPSCs recapitulate salient features of LSCs, such as high proliferation potential, multipotentiality, serial engraftment of a lethal leukemia in immunodeficient mice and hierarchical organization giving rise to phenotypic and functional heterogeneity. Thus AML-iPSC models enable for the first time genome-wide integrative molecular analyses, large-scale screening and in vitro and in vivo validation in relevant LSC-like human cells. In this application we will use these very novel AML-iPSC models to identify key molecular mechanisms sustaining LSC properties that may constitute promising therapeutic targets. The proposed studies leverage the unique expertise of the Papapetrou lab in iPSC modeling, combined with the expertise of the Kharas lab in studying molecular mechanisms of myeloid malignancy and can generate new insights into LSC biology and identify new therapeutic targets for future drug development. ! |
0.909 |
2019 — 2021 | Jaffrey, Samie R [⬀] Kharas, Michael |
R01Activity Code Description: To support a discrete, specified, circumscribed project to be performed by the named investigator(s) in an area representing his or her specific interest and competencies. |
Mechanisms and Functions of N6-Methyladenosine (M6a) in Cancer @ Weill Medical Coll of Cornell Univ SUMMARY An important mechanism of gene expression regulation is dynamically regulated, and possibly reversible, nucleotide modifications in mRNA. These modifications can have marked effects on mRNA stability, translation, and other aspects of mRNA metabolism. We had a founding role in this field by developing the technology for transcriptome-wide mapping of N6-methyladenosine (m6A). Our mapping study provided the first evidence that m6A could be dynamically regulated, and potentially impart new functions in mRNA. We recently showed that acute myeloid leukemia (AML) cells exhibit elevated levels of METTL3 and METTL14, the heterodimer that acts as the m6A-forming methyltransferase. We found that m6A promotes self-renewal in AML and in CD34+ stem cells, and depletion of m6A triggers a differentiation program. Thus, m6A has critical roles in hematopoietic differentiation at specific stages of development, and this process is deregulated in AML. Therefore, precise characterization of these stage-specific patterns of m6A at a transcriptome-wide level is critical to understand how m6A affects developmental transitions. Developing new methods to map m6A in the rare cell populations relevant to hematopoiesis and AML would help to reveal how this epitranscriptomic modification is critical for the regulation and deregulation of differentiation seen in AML, and possibly other cancers. Additionally, the effects of m6A are largely thought to reflect the actions of specific ?reader? proteins, which bind m6A in mRNA to affect its fate in cells. The major readers are YTHDC1 in the nucleus, and the YTHDF family in the cytoplasm, which comprise three nearly identical paralogs, and which may have redundant functions. In order to significantly advance our understanding of the role of m6A in AML, the specific aims of this proposal are: (1) To visualize and map m6A in mRNA in a cell-type specific manner. Here we describe the development of methods for detecting and mapping m6A in a cell type-specific manner and their application to understand m6A dynamics in hematopoiesis and AML. (2) To define the functional requirement for the m6A reader YTHDC1 in normal blood cells and in AML. Based on a genome-wide screen and our preliminary data, YTHDC1 is a strong candidate for the reader that may mediate major aspects of the effect of m6A in AML. Here we assess the functional role for YTHDC1 in both normal and malignant hematopoiesis using human cord blood cells, AML cell lines and primary AML patients. (3) To determine the roles and regulation of the YTHDF cytosolic m6A readers on mRNA fate. The YTHDF proteins appear to be the major regulators of m6A mRNAs in the cytosol. We will determine how YTHDF proteins are regulated to mediate their m6A-mRNA destabilizing effects and if YTHDF proteins influence cellular differentiation and proliferation in cancer cell lines and in AML. Overall, our project will develop new enabling technologies for studying m6A in cancer and test mechanisms by which the m6A readers contribute to cancer progression. |
0.909 |
2021 | Kharas, Michael | R01Activity Code Description: To support a discrete, specified, circumscribed project to be performed by the named investigator(s) in an area representing his or her specific interest and competencies. |
Characterizing the Msi2 Network in Leukemia @ Sloan-Kettering Inst Can Research PROJECT SUMMARY/ABSTRACT An evolutionary conserved developmental program is carefully maintained in hematopoietic stem cells (HSCs). Genetic alterations and epigenetic mechanisms can alter the balance of normal blood development resulting in hematological malignancies. Our laboratory and others have found that the MUSASHI2 (MSI2) RNA binding proteins is highly expressed in the most aggressive cancers and predicts a poor clinical outcome in acute myeloid leukemia (AML) patients. Genetic models have found that MSI2 is required for leukemia stem cell function. Utilizing a new way to identify mRNA targets of RNA binding proteins, we have found that MSI2 activity is increased in leukemia stem cells compared to normal stem and progenitor cells. This surprising finding suggests that RNA binding protein function can be dysregulated beyond just expression differences. We hypothesize that the MSI family of RNA binding protein have differential activity in AML compared to normal cells and that MSI enhances the dysregulated epigenome in AML. We propose two possible mechanisms for this intriguing finding 1) MSI2 associated RBPs compete for MSI2-binding sites and 2) Post- translation modifications can modulate MSI2 activity. Our preliminary data has uncovered that MSI2 can mediate resistance to PRMT5 and that PRMT1 and PRMT5 can directly methylate MSI2. PRMT5 inhibitors are being investigated as therapeutic targets and our proposal suggests a novel link to this pathway and may explain cell context MSI2 activity. Our proposal will utilize new genetic models to characterize MSI2 targets in specific cellular contexts and explore the MSI2 associated program to identify new therapeutic strategies in AML. |
0.955 |
2021 | Kharas, Michael | R01Activity Code Description: To support a discrete, specified, circumscribed project to be performed by the named investigator(s) in an area representing his or her specific interest and competencies. |
Uncovering the Role For Msi2 Network in Hematopoietic Stem Cells @ Sloan-Kettering Inst Can Research PROJECT SUMMARY/ABSTRACT Hematopoietic stem cells (HSCs) must navigate important cellular fate choices that include a symmetric self-renewal, symmetric commitment or undergo an asymmetric cell division where one of the cells is fated to differentiate. Alterations in this homeostatic program can lead to hematopoietic disorders and malignancies. Myelodysplastic syndromes (MDS) are a heterogeneous set of clonal disorders characterized by ineffective blood cell development. A common pathophysiologic mechanism in MDS is the presence of dysregulated hematopoietic stem and progenitor cells that fail to normally develop into the diverse set of blood cells necessary for normal function. Our laboratory and others identified MUSASHI2 (MSI2) as a central regulator of HSC and hematopoietic progenitor cell self-renewal (Kharas et al. Nature Medicine 2010). Additionally, we identified that Msi2 loss results in a defect in controlling symmetric and asymmetric division, failure to engraft and results in defective maintenance of myeloid lineage biased HSCs in part through control of the TGF? pathway (Park et al. 2014 Journal of Experimental Medicine). We found that elevated levels of MSI2 expression predicts poor outcome and using a genetic MDS mouse model that overexpresses MSI2 can drive a more aggressive MDS (Taggart et al. 2016 Nature Communications). To determine if MSI2 is part of a regulatory network, we performed proteomics and in vivo shRNA screen for functional regulators of leukemia self-renewal. Based on this screen, we identified SYNCRIP, an RNA binding protein that shares MSI2 targets and is required in leukemia stem cells (Vu et al., 2017 Nature Genetics). Our preliminary data with a conditional knockout for Syncrip indicates that it is also critical for HSC self-renewal. Our proposal will expand our focus from MSI2 to its associated regulatory network and characterize and identify new molecular determinants for HSC and HSPC symmetric self-renewal and asymmetric fate choice. We have adapted new technologies that include a barcoding, single cell RNA-seq and paired daughter HSC assays (FATE-seq). We have also develop a new way to map direct mRNA targets in HSCs called (HYPERTRIBE), (Nguyen et al. Nature Communications 2020).This proposal will identify new regulators of HSPC fate choice which will lead to novel therapeutic strategies to improve outcomes in MDS patients. |
0.955 |