2008 — 2012 |
Moszczynska, Anna |
K99Activity Code Description: To support the initial phase of a Career/Research Transition award program that provides 1-2 years of mentored support for highly motivated, advanced postdoctoral research scientists. R00Activity Code Description: To support the second phase of a Career/Research Transition award program that provides 1 -3 years of independent research support (R00) contingent on securing an independent research position. Award recipients will be expected to compete successfully for independent R01 support from the NIH during the R00 research transition award period. |
The Role of Ubiquitination in Methamphetamine Neurotoxicity (Cda) @ University of Toledo Health Sci Campus
[unreadable] DESCRIPTION (provided by applicant): My long-term academic career goal is to conduct independent research into the discovery of new molecular pathways involved in toxicity of drugs that affect dopaminergic system, particularly methamphetamine (MA), in order to develop better treatments for their abusers. Ubiquitination is emerging as a multifunctional signal in cellular processes; therefore, it is a potential novel signal in MA neurotoxicity. There is no data on the role of ubiquitination after high-dose MA; therefore, my immediate goal is to investigate the involvement of ubiquitination-mediating E3 ligases (particularly parkin) in regulation of proteins known to be affected by MA toxic actions, and vice versa, namely ubiquitin proteasomal system, mitochondrial electron chain proteins, dopamine transporter (DAT) and vesicular monoamine transporter 2 (VMAT2), in animal model of MA toxicity. Since parkin protects against a variety of cellular stressors, including agents affecting mitochondrial function, it is planned to determine whether parkin (or other E3 ligases) protects dopaminergic neurons against MA in vivo. The specific aims are: (1) to examine the effect of parkin on MA neurotoxicity, (2) to investigate the effect of MA on parkin function and the catalytic properties of the proteasome, (2) to investigate the interactions between decreased parkin function and mitochondrial electron transport chain activity, (3) (4) to investigate ubiquitination-mediated DAT trafficking after MA, and (5) to determine the molecular link between the DAT, parkin and VMAT2 after MA. The proposed mentored research will allow me to develop skills needed for independent career and to learn new techniques, particularly to acquire solid experience working with animal model of MA toxicity. Such knowledge and experience will help me with my independent studies directed toward the identification of new targets that may hopefully drive the development of novel drugs that can treat or prevent neurodegeneration caused by MA. Since factors involved in neurotoxicity interact with each other, it is very important to understand their interactions in order to elucidate points for pharmaceutical intervention. To date, there are no safe and tested medications for treating MA addiction and new MA antidotes for use by emergency room physicians to treat MA-related overdoses are needed. The results from my studies will assist the development of pharmacological therapies to ameliorate potential neuronal damage and cognitive impairments due to MA abuse. [unreadable] [unreadable] [unreadable]
|
0.964 |
2013 — 2017 |
Moszczynska, Anna |
R01Activity Code Description: To support a discrete, specified, circumscribed project to be performed by the named investigator(s) in an area representing his or her specific interest and competencies. |
Proteasome and Parkin as Drug Targets Against Methamphetamine Toxicity
DESCRIPTION (provided by applicant): Methamphetamine (METH) is a highly addictive psychostimulant drug that is neurotoxic when taken at high doses chronically or acutely. METH selectively damages striatal dopaminergic terminals in experimental animals and humans. Despite years of active research on METH neurotoxicity, no specific medications have been developed to counteract the damaging effects that METH has on the brain. Due to its widespread abuse, there is a compelling need for effective pharmaceuticals that can protect and/or restore the brain from the toxic effects of acute METH overdose and chronic METH abuse. Thus, it is necessary to identify molecular drug targets in order to develop novel pharmaceuticals. My long-term goal is to develop neuroprotective therapies to treat the toxic effects of METH use. The goal of the proposed research is to better understand the molecular mechanisms regulating the ubiquitin-proteasome system in the METH-exposed rat brain and to determine whether two components of this system, proteasome and the E3 ligase parkin, are potential pharmaceutical targets that can be used to promote [survival and recovery] of dopaminergic terminals in vivo after toxic doses of [binge and chronic] METH. Both proteasome and parkin are decreased shortly after binge METH administration, and those deficits are also involved in the etiology of Parkinson's disease. We hypothesize that increasing their functions will provide neuroprotection in rats chronically and acutely exposed to METH. Specific Aim 1 will evaluate the relative roles of 20S and 26S proteasomes on the [survival of dopaminergic terminals and their recovery from binge and chronic] METH by using proteasomal inhibitors and a novel approach to regulate proteasomal activity, namely, systemic injections of TAT-tagged peptides that interfere with proteasomal assembly. TAT is a domain of the human immunodeficiency virus type 1 that rapidly crosses the blood brain barrier. These two forms of the proteasome behave differently upon exposure to METH- induced oxidative stress; thus, evaluation of their respective roles in METH neurotoxicity is warranted. Specific Aim 2 will evaluate the role of parkin in the [survival of and recovery from binge and chronic] METH using wild- type, parkin-overexpressing, and parkin knock-out rats. The role of parkin in the formation of intracellular inclusions in the nigrostriatal dopamine neurons will be investigated using immunohistochemistry and confocal microscopy. Specific Aim 3 will determine whether proteasomes and parkin are functionally linked in the METH-exposed rat brain. For clinical intervention purposes, it is important to know how variations in parkin levels influence 20S and 26S function and vice versa. These aims are conceptually linked as they investigate regulatory processes within the ubiquitin-proteasome system that may be important for [endogenous survival and recovery mechanisms] in dopamine neurons and, therefore, clinically important. The findings from the proposed research may lead to novel treatments for METH users.
|
0.948 |