Area:
Psychoacoustics, otoacoustic emissions, auditory evoked potentials
We are testing a new system for linking grants to scientists.
The funding information displayed below comes from the
NIH Research Portfolio Online Reporting Tools and the
NSF Award Database.
The grant data on this page is limited to grants awarded in the United States and is thus partial. It can nonetheless be used to understand how funding patterns influence mentorship networks and vice-versa, which has deep implications on how research is done.
You can help! If you notice any innacuracies, please
sign in and mark grants as correct or incorrect matches.
Sign in to see low-probability grants and correct any errors in linkage between grants and researchers.
High-probability grants
According to our matching algorithm, Yuan He is the likely recipient of the following grants.
Years |
Recipients |
Code |
Title / Keywords |
Matching score |
2017 — 2018 |
He, Yuan |
K22Activity Code Description: To provide support to outstanding newly trained basic or clinical investigators to develop their independent research skills through a two phase program; an initial period involving and intramural appointment at the NIH and a final period of support at an extramural institution. The award is intended to facilitate the establishment of a record of independent research by the investigator in order to sustain or promote a successful research career. |
Role of Nek7 Protein in Nlrp3 Inflammasome Activation and Inflammation
Project Summary/Abstract NACHT, LRR and PYD domains-containing protein 3 (NLRP3) belongs to a class of Nod-like-receptor (NLR) proteins that trigger the assembly of the inflammasome, a molecular platform that mediates caspase-1 activation and processing and secretion of biologically active IL-1? and IL-18. In addition to its critical role in innate immunity, dysregulation of the NLRP3 inflammasome has been linked to both inherited and acquired inflammatory disorders, such as Cryopyrin-associated autoinflammatory syndrome, gout, Crohn?s disease, Alzheimer?s disease, diabetes and atherosclerosis. Despite the medical importance of the NLRP3 inflammasome, the mechanism by which it is activated remains elusive. Using a proteomics approach to reveal critical factors that interact with NLRP3 in macrophages, we identified the Nek7 protein kinase as a NLRP3- interacting protein that is essential for the assembly of the NLRP3 inflammasome. Nek7 is associated with NLRP3 in the resting state, and this interaction is enhanced during NLRP3 activation. In macrophages depleted with Nek7, caspase-1 activation and IL-1? secretion are abrogated in response to stimuli that trigger NLRP3 activation. In contrast, Nek7 is not required for the activation of the NLRC4 and AIM2 inflammasomes. The critical and specific role of Nek7 in the activation of the NLRP3 inflammasome is unexpected because Nek7 is a member of a kinase family that regulates cytokinesis. The goal of this proposal is to define the molecular mechanism by which Nek7 regulates the activation of the NLRP3 inflammasome. Based on our preliminary results, our primary hypothesis is that the Nek7 protein kinase regulates NLRP3 inflammasome activation by promoting the assembly of the inflammasome. Furthermore, we hypothesize that Nek7 contributes to the induction and/or progression of inflammatory disease. To test these hypotheses, we propose characterizing the mechanism by which Nek7 regulates NLRP3 inflammasome activation and the role of Nek7 in vivo using animals models of inflammation that rely on IL-1? secretion via NLRP3. Understanding the role of Nek7 in NLRP3 inflammasome activation is expected to provide critical insight into the development of novel therapeutic strategies for inflammatory diseases.
|
0.943 |