Area:
Hydrocephalus, Neurosurgery
We are testing a new system for linking grants to scientists.
The funding information displayed below comes from the
NIH Research Portfolio Online Reporting Tools and the
NSF Award Database.
The grant data on this page is limited to grants awarded in the United States and is thus partial. It can nonetheless be used to understand how funding patterns influence mentorship networks and vice-versa, which has deep implications on how research is done.
You can help! If you notice any innacuracies, please
sign in and mark grants as correct or incorrect matches.
Sign in to see low-probability grants and correct any errors in linkage between grants and researchers.
High-probability grants
According to our matching algorithm, David M. Frim is the likely recipient of the following grants.
Years |
Recipients |
Code |
Title / Keywords |
Matching score |
2003 — 2006 |
Frim, David Martin |
R01Activity Code Description: To support a discrete, specified, circumscribed project to be performed by the named investigator(s) in an area representing his or her specific interest and competencies. |
Hydrocephalus, Intracranial Pressure and Neurocognition
DESCRIPTION (provided by applicant): Hydrocephalus, a build-up of cerebrospinal fluid (CSF) in the intracranial space, is a disease that can cause significant neurological injury. Although the associated life-threatening intracranial hypertension can be well treated by diversion of cerebrospinal fluid to an absorptive surface outside of the brain, the short- and longterm cognitive effects of elevated intracranial pressure and altered cerebrospinal fluid pressure dynamics are incompletely understood. The overall objective of this proposal is to determine the cognitive effects of changes in intracranial pressure and altered CSF pressure dynamics in a population of hydrocephalics. In addition, these studies may help to determine the pressures needed to optimize cognitive outcome in the treatment of hydrocephalus. Specifically, the aims of the proposal are: (1) to determine the acute changes in cognitive function associated with graded increases in ICP seen after manipulations of novel programmable CSF shunting valves; (2) to determine the changes in cognitive function caused by the lowering of intracranial pressure (ICP) at the time of treatment of malfunctioning shunts; (3) to determine the cognitive deficits and post-treatment improvement in the sub-population of hydrocephalics with aqueductal stenosis who are treated by an internal CSF bypass procedure; and (4) to determine the shunting pressure dynamic that optimizes cognitive function when comparing the two most commonly used shunting valve systems: those that siphon and those that do not. We propose enrolling hydrocephalic patients as subjects for a series of studies addressing the above specific aims. Cerebrospinal fluid pressure dynamics will be measured using telemonitoring technology for the non-invasive measurement of ICP which is implanted in-line in the CSF shunting system as part of the standard clinical care of the hydrocephalic patient. Treatment outcome determination will be based on specific neuropsychological tests of higher cortical function. With this approach in the hydrocephalus model, we will be able to examine the effects of ICP changes on neurocognition, presumably determining which cognitive functions are ICP "sensitive" or ICP "resistant". At the study conclusion, derived data should also practically affect the surgical choice of shunting products.
|
1 |