We are testing a new system for linking grants to scientists.
The funding information displayed below comes from the
NIH Research Portfolio Online Reporting Tools and the
NSF Award Database.
The grant data on this page is limited to grants awarded in the United States and is thus partial. It can nonetheless be used to understand how funding patterns influence mentorship networks and vice-versa, which has deep implications on how research is done.
You can help! If you notice any innacuracies, please
sign in and mark grants as correct or incorrect matches.
Sign in to see low-probability grants and correct any errors in linkage between grants and researchers.
High-probability grants
According to our matching algorithm, Katherine J. Wert is the likely recipient of the following grants.
Years |
Recipients |
Code |
Title / Keywords |
Matching score |
2015 — 2017 |
Wert, Katherine Jean |
F32Activity Code Description: To provide postdoctoral research training to individuals to broaden their scientific background and extend their potential for research in specified health-related areas. |
A Novel in Vivo Model System of Melanoma Using a Human-Mouse Neural Crest Cell Chimera @ Whitehead Institute For Biomedical Res
? DESCRIPTION (provided by applicant): Metastatic melanoma is one of the fastest growing cancers, causing more than 8,650 deaths in 2009 alone, and this number is projected to increase over time. Models for the study of melanoma have multiple limitations, including the inability of most transgenic systems to accurately reproduce complex disease phenotypes such as cancer, and the inability of human embryonic stem (hES) and human induced pluripotent stem (hiPS) cell technology to reproduce the host microenvironments. It has been shown, however, that aggressive melanoma cells up-regulate a subset of neural crest (NC) cell guidance and differentiation markers as well as being a NC cell-derived cancer. We hypothesize that an in vivo platform for the study of melanoma development, invasion, and metastasis can be created using human NC cell chimeras. There are two specific goals of this study: 1) to optimize the incorporation of hES and hiPS cell-derived NC cells into a murine system, and 2) to model human melanoma development and metastasis in vivo. These chimeras will be created by in utero injections of hES or hiPS cell-derived NC cells into the developing mouse embryo at embryonic day 8.5 (E8.5). Human NC donor cells will be labeled with the eGFP marker and injected embryos will be analyzed during gestation and post-natally to localize the injected cells and establish methods optimizing their survival and colonization, such as the over-expression of NC cell survival genes via lentiviral transfection. We will then utilize this chimeric system to over-express common genes with known roles in melanoma, and inject these NC cells in utero at E8.5 to model melanoma initiation and development in vivo in a murine model system. Additionally, we will promote tumor formation of the hES or hiPS cell-derived NC cells after subcutaneous injection into an immune-compromised mouse, and the tumor cells formed can be cultured and re-injected at E8.5 into the developing mouse embryo to study tumor migration and metastasis over the developmental period. Overall, we propose to bridge the studies of embryonic development with cancer development, focusing on melanoma. We will analyze the progression of melanoma using hES/hiPS cell technology coupled with in vivo murine modeling. This novel system will not only bridge the knowledge of embryonic development and cancer biology, but will provide an in vivo model of melanoma to be used for testing potential therapeutic agents.
|
0.922 |