Year |
Citation |
Score |
2020 |
Belkin M, Hsu D, Ma S, Mandal S. Reply to Loog et al.: Looking beyond the peaking phenomenon. Proceedings of the National Academy of Sciences of the United States of America. PMID 32371494 DOI: 10.1073/Pnas.2003206117 |
0.321 |
|
2019 |
Belkin M, Hsu D, Ma S, Mandal S. Reconciling modern machine-learning practice and the classical bias-variance trade-off. Proceedings of the National Academy of Sciences of the United States of America. PMID 31341078 DOI: 10.1073/Pnas.1903070116 |
0.394 |
|
2019 |
Que Q, Belkin M. Back To The Future: Radial Basis Function Network Revisited. Ieee Transactions On Pattern Analysis and Machine Intelligence. PMID 30908191 DOI: 10.1109/Tpami.2019.2906594 |
0.346 |
|
2015 |
Belkin M, Sinha K. Polynomial learning of distribution families Siam Journal On Computing. 44: 889-911. DOI: 10.1137/13090818X |
0.391 |
|
2014 |
Zhou X, Belkin M. Semi-Supervised Learning Academic Press Library in Signal Processing. 1: 1239-1269. DOI: 10.1016/B978-0-12-396502-8.00022-X |
0.609 |
|
2013 |
Belkin M, Narayanan H, Niyogi P. Heat flow and a faster algorithm to compute the surface area of a convex body Random Structures and Algorithms. 43: 407-428. DOI: 10.1002/Rsa.20513 |
0.622 |
|
2009 |
Shi T, Belkin M, Yu B. Data spectroscopy: Eigenspaces of convolution operators and clustering Annals of Statistics. 37: 3960-3984. DOI: 10.1214/09-Aos700 |
0.357 |
|
2008 |
Luxburg Uv, Belkin M, Bousquet O. Consistency of spectral clustering Annals of Statistics. 36: 555-586. DOI: 10.1214/009053607000000640 |
0.367 |
|
2008 |
Belkin M, Niyogi P. Towards a theoretical foundation for Laplacian-based manifold methods Journal of Computer and System Sciences. 74: 1289-1308. DOI: 10.1016/J.Jcss.2007.08.006 |
0.663 |
|
2007 |
Narayanan H, Belkin M, Niyogi P. On the relation between low density separation, spectral clustering and graph cuts Advances in Neural Information Processing Systems. 1025-1032. |
0.555 |
|
2007 |
Belkin M, Niyogi P. Convergence of Laplacian eigenmaps Advances in Neural Information Processing Systems. 129-136. |
0.501 |
|
2005 |
Sindhwani V, Niyogi P, Belkin M. Beyond the point cloud: From transductive to semi-supervised learning Icml 2005 - Proceedings of the 22nd International Conference On Machine Learning. 825-832. |
0.583 |
|
2004 |
Belkin M, Niyogi P. Semi-supervised learning on riemannian manifolds Machine Learning. 56: 209-239. DOI: 10.1023/B:Mach.0000033120.25363.1E |
0.628 |
|
2004 |
Belkin M, Matveeva I, Niyogi P. Regularization and semi-supervised learning on large graphs Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science). 3120: 624-638. |
0.621 |
|
2004 |
Belkin M, Matveeva I, Niyogi P. Tikhonov regularization and semi-supervised learning on large graphs Icassp, Ieee International Conference On Acoustics, Speech and Signal Processing - Proceedings. 3: III1000-III1003. |
0.621 |
|
2003 |
Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation Neural Computation. 15: 1373-1396. DOI: 10.1162/089976603321780317 |
0.632 |
|
2002 |
Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering Advances in Neural Information Processing Systems. |
0.511 |
|
Show low-probability matches. |