Year |
Citation |
Score |
2023 |
Maith O, Baladron J, Einhäuser W, Hamker FH. Exploration behavior after reversals is predicted by STN-GPe synaptic plasticity in a basal ganglia model. Iscience. 26: 106599. PMID 37250300 DOI: 10.1016/j.isci.2023.106599 |
0.536 |
|
2021 |
Novin S, Fallah A, Rashidi S, Beuth F, Hamker FH. A neuro-computational model of visual attention with multiple attentional control sets. Vision Research. 189: 104-118. PMID 34749237 DOI: 10.1016/j.visres.2021.08.009 |
0.332 |
|
2021 |
Maith O, Schwarz A, Hamker FH. Optimal attention tuning in a neuro-computational model of the visual cortex-basal ganglia-prefrontal cortex loop. Neural Networks : the Official Journal of the International Neural Network Society. 142: 534-547. PMID 34314999 DOI: 10.1016/j.neunet.2021.07.008 |
0.415 |
|
2019 |
Bergelt J, Hamker FH. Spatial updating of attention across eye movements: A neuro-computational approach. Journal of Vision. 19: 10. PMID 31323096 DOI: 10.1167/19.7.10 |
0.527 |
|
2017 |
Ziesche A, Bergelt J, Deubel H, Hamker FH. Pre- and post-saccadic stimulus timing in Saccadic Suppression of Displacement - a computational model. Vision Research. PMID 28709922 DOI: 10.1016/j.visres.2017.06.007 |
0.433 |
|
2017 |
Hartmann TS, Zirnsak M, Marquis M, Hamker FH, Moore T. Two Types of Receptive Field Dynamics in Area V4 at the Time of Eye Movements? Frontiers in Systems Neuroscience. 11: 13. PMID 28377700 DOI: 10.3389/Fnsys.2017.00013 |
0.775 |
|
2016 |
Bergelt J, Hamker FH. Suppression of displacement detection in the presence and absence of eye movements: a neuro-computational perspective. Biological Cybernetics. PMID 26733211 DOI: 10.1007/s00422-015-0677-z |
0.437 |
|
2016 |
Hamker F, Schwarz A. A quantitative neuro-computational model of attentive receptive field changes in area MT Journal of Vision. 16: 939. DOI: 10.1167/16.12.939 |
0.4 |
|
2015 |
Lappe M, Hamker FH. Peri-saccadic compression to two locations in a two-target choice saccade task. Frontiers in Systems Neuroscience. 9: 135. PMID 26500510 DOI: 10.3389/fnsys.2015.00135 |
0.736 |
|
2015 |
Hamker F, Beuth F. A mechanistic cortical microcircuit of attention for amplification, normalization and suppression. Journal of Vision. 15: 1254. PMID 26326942 DOI: 10.1167/15.12.1254 |
0.389 |
|
2015 |
Beuth F, Hamker F. The relation of object substitution masking (OSM) and attention dynamics: A neuro-computational modeling study. Journal of Vision. 15: 1229. PMID 26326917 DOI: 10.1167/15.12.1229 |
0.507 |
|
2015 |
Teichmann M, Schuster J, Hamker F. A computational model of the perisaccadic updating of spatial attention. Journal of Vision. 15: 69. PMID 26325757 DOI: 10.1167/15.12.69 |
0.39 |
|
2015 |
Beuth F, Hamker FH. A mechanistic cortical microcircuit of attention for amplification, normalization and suppression. Vision Research. PMID 25883048 DOI: 10.1016/j.visres.2015.04.004 |
0.454 |
|
2015 |
Ebner C, Schroll H, Winther G, Niedeggen M, Hamker FH. Open and closed cortico-subcortical loops: A neuro-computational account of access to consciousness in the distractor-induced blindness paradigm. Consciousness and Cognition. 35: 295-307. PMID 25802010 DOI: 10.1016/j.concog.2015.02.007 |
0.326 |
|
2014 |
Ziesche A, Hamker FH. Brain circuits underlying visual stability across eye movements-converging evidence for a neuro-computational model of area LIP. Frontiers in Computational Neuroscience. 8: 25. PMID 24653691 DOI: 10.3389/fncom.2014.00025 |
0.484 |
|
2014 |
Beuth F, Jamalian A, Hamker FH. How visual attention and suppression facilitate object recognition? Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 8681: 459-466. DOI: 10.1007/978-3-319-11179-7-58 |
0.33 |
|
2012 |
Teichmann M, Wiltschut J, Hamker F. Learning invariance from natural images inspired by observations in the primary visual cortex. Neural Computation. 24: 1271-96. PMID 22295987 DOI: 10.1162/NECO_a_00268 |
0.362 |
|
2011 |
Kiefer M, Ansorge U, Haynes JD, Hamker F, Mattler U, Verleger R, Niedeggen M. Neuro-cognitive mechanisms of conscious and unconscious visual perception: From a plethora of phenomena to general principles. Advances in Cognitive Psychology / University of Finance and Management in Warsaw. 7: 55-67. PMID 22253669 DOI: 10.2478/V10053-008-0090-4 |
0.45 |
|
2011 |
Zirnsak M, Gerhards RG, Kiani R, Lappe M, Hamker FH. Anticipatory saccade target processing and the presaccadic transfer of visual features. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 31: 17887-91. PMID 22159103 DOI: 10.1523/Jneurosci.2465-11.2011 |
0.802 |
|
2011 |
Ziesche A, Hamker FH. A computational model for the influence of corollary discharge and proprioception on the perisaccadic mislocalization of briefly presented stimuli in complete darkness. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 31: 17392-405. PMID 22131401 DOI: 10.1523/JNEUROSCI.3407-11.2011 |
0.464 |
|
2011 |
Zirnsak M, Beuth F, Hamker FH. Split of spatial attention as predicted by a systems-level model of visual attention. The European Journal of Neuroscience. 33: 2035-45. PMID 21645099 DOI: 10.1111/J.1460-9568.2011.07718.X |
0.821 |
|
2011 |
Hamker FH, Zirnsak M, Ziesche A, Lappe M. Computational models of spatial updating in peri-saccadic perception. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 366: 554-71. PMID 21242143 DOI: 10.1098/Rstb.2010.0229 |
0.79 |
|
2010 |
Zirnsak M, Hamker FH. Attention alters feature space in motion processing. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 30: 6882-90. PMID 20484630 DOI: 10.1523/Jneurosci.3543-09.2010 |
0.77 |
|
2010 |
Zirnsak M, Lappe M, Hamker FH. The spatial distribution of receptive field changes in a model of peri-saccadic perception: predictive remapping and shifts towards the saccade target. Vision Research. 50: 1328-37. PMID 20152853 DOI: 10.1016/J.Visres.2010.02.002 |
0.818 |
|
2010 |
Hamker FH, Zirnsak M, Lappe M. Dynamic receptive field effects predicted by a saccade target theory of visual perception Journal of Vision. 7: 319-319. DOI: 10.1167/7.9.319 |
0.794 |
|
2010 |
Hamker FH, Zirnsak M, Calow D, Lappe M. The perisacadic compression of visual space - what may it have to do with spatial attention? Journal of Vision. 6: 105-105. DOI: 10.1167/6.6.105 |
0.775 |
|
2010 |
Zirnsak M, Hamker F. Global feature-based attention distorts feature space Journal of Vision. 10: 190-190. DOI: 10.1167/10.7.190 |
0.75 |
|
2009 |
Dubois J, Hamker FH, VanRullen R. Attentional selection of noncontiguous locations: the spotlight is only transiently "split". Journal of Vision. 9: 3.1-11. PMID 19757881 DOI: 10.1167/9.5.3 |
0.756 |
|
2009 |
Vitay J, Hamker F. Basal ganglia and memory retrieval during delayed match-to-sample and non-match-to-sample tasks Bmc Neuroscience. 10. DOI: 10.1186/1471-2202-10-S1-P162 |
0.322 |
|
2008 |
Hamker FH, Zirnsak M, Lappe M. About the influence of post-saccadic mechanisms for visual stability on peri-saccadic compression of object location. Journal of Vision. 8: 1.1-13. PMID 19146302 DOI: 10.1167/8.14.1 |
0.799 |
|
2008 |
Georg K, Hamker FH, Lappe M. Influence of adaptation state and stimulus luminance on peri-saccadic localization. Journal of Vision. 8: 15.1-11. PMID 18318618 DOI: 10.1167/8.1.15 |
0.674 |
|
2008 |
Hamker FH, Zirnsak M, Calow D, Lappe M. The peri-saccadic perception of objects and space. Plos Computational Biology. 4: e31. PMID 18282086 DOI: 10.1371/Journal.Pcbi.0040031 |
0.817 |
|
2007 |
Hamker FH. The mechanisms of feature inheritance as predicted by a systems-level model of visual attention and decision making. Advances in Cognitive Psychology / University of Finance and Management in Warsaw. 3: 111-23. PMID 20517503 DOI: 10.2478/v10053-008-0019-y |
0.338 |
|
2006 |
Hamker FH, Zirnsak M. V4 receptive field dynamics as predicted by a systems-level model of visual attention using feedback from the frontal eye field. Neural Networks : the Official Journal of the International Neural Network Society. 19: 1371-82. PMID 17014990 DOI: 10.1016/J.Neunet.2006.08.006 |
0.819 |
|
2005 |
Hamker FH. The reentry hypothesis: the putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas V4, IT for attention and eye movement. Cerebral Cortex (New York, N.Y. : 1991). 15: 431-47. PMID 15749987 DOI: 10.1093/cercor/bhh146 |
0.463 |
|
2005 |
Hamker FH. A computational model of visual stability and change detection during eye movements in real-world scenes Visual Cognition. 12: 1161-1176. DOI: 10.1080/13506280444000698 |
0.354 |
|
2004 |
Hamker FH. A dynamic model of how feature cues guide spatial attention. Vision Research. 44: 501-21. PMID 14680776 DOI: 10.1016/j.visres.2003.09.033 |
0.393 |
|
2004 |
Hamker FH, Zirnsak M, Lappe M. A computational model of saccadic mislocalization based on spatial reentry Journal of Vision. 4: 736-736. DOI: 10.1167/4.8.736 |
0.663 |
|
2003 |
Hamker FH. The reentry hypothesis: linking eye movements to visual perception. Journal of Vision. 3: 808-16. PMID 14765963 DOI: 10:1167/3.11.14 |
0.383 |
|
2003 |
Hamker FH. A dynamic computational model of goal-directed visual perception Journal of Vision. 3: 2a. DOI: 10.1167/3.9.2 |
0.319 |
|
2002 |
Hamker F, VanRullen R. The time course of attentional selection among competing locations Journal of Vision. 2: 7a. DOI: 10.1167/2.7.7 |
0.695 |
|
Show low-probability matches. |