John S. Yeomans - Publications

Affiliations: 
University of Toronto, Toronto, ON, Canada 
Area:
behavioral neuroscience

73 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2017 Steidl S, Wasserman DI, Blaha CD, Yeomans JS. Opioid-induced Rewards, Locomotion, and Dopamine Activation: A Proposed Model for Control by Mesopontine and Rostromedial Tegmental Neurons. Neuroscience and Biobehavioral Reviews. PMID 28951251 DOI: 10.1016/J.Neubiorev.2017.09.022  0.726
2016 Wasserman DI, Tan JM, Kim JC, Yeomans JS. Muscarinic Control of Rostromedial Tegmental Nucleus GABA Neurons and Morphine-induced Locomotion. The European Journal of Neuroscience. PMID 26990801 DOI: 10.1111/ejn.13237  0.663
2016 Steidl S, Wasserman DI, Blaha CD, Yeomans J. Muscarinic receptor gene transfections and in vivo dopamine electrochemistry: Muscarinic receptor control of dopamine-dependent reward and locomotion Neuromethods. 107: 261-282. DOI: 10.1007/978-1-4939-2858-3_14  0.69
2014 Nguyen R, Morrissey MD, Mahadevan V, Cajanding JD, Woodin MA, Yeomans JS, Takehara-Nishiuchi K, Kim JC. Parvalbumin and GAD65 interneuron inhibition in the ventral hippocampus induces distinct behavioral deficits relevant to schizophrenia. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 34: 14948-60. PMID 25378161 DOI: 10.1523/Jneurosci.2204-14.2014  0.317
2013 Wasserman DI, Wang HG, Rashid AJ, Josselyn SA, Yeomans JS. Cholinergic control of morphine-induced locomotion in rostromedial tegmental nucleus versus ventral tegmental area sites. The European Journal of Neuroscience. 38: 2774-85. PMID 23773170 DOI: 10.1111/Ejn.12279  0.673
2013 Steidl S, Lee E, Wasserman D, Yeomans JS. Acute food deprivation reverses morphine-induced locomotion deficits in M5 muscarinic receptor knockout mice. Behavioural Brain Research. 252: 176-9. PMID 23742799 DOI: 10.1016/J.Bbr.2013.05.053  0.728
2013 Curry T, Egeto P, Wang H, Podnos A, Wasserman D, Yeomans J. Dopamine receptor D2 deficiency reduces mouse pup ultrasonic vocalizations and maternal responsiveness Genes, Brain and Behavior. 12: 397-404. PMID 23521753 DOI: 10.1111/gbb.12037  0.582
2012 Yeomans JS. Muscarinic receptors in brain stem and mesopontine cholinergic arousal functions. Handbook of Experimental Pharmacology. 243-59. PMID 22222702 DOI: 10.1007/978-3-642-23274-9_11  0.348
2011 Steidl S, Miller AD, Blaha CD, Yeomans JS. M₅ muscarinic receptors mediate striatal dopamine activation by ventral tegmental morphine and pedunculopontine stimulation in mice. Plos One. 6: e27538. PMID 22102904 DOI: 10.1371/Journal.Pone.0027538  0.639
2010 Yeomans JS, Bosch D, Alves N, Daros A, Ure RJ, Schmid S. GABA receptors and prepulse inhibition of acoustic startle in mice and rats. The European Journal of Neuroscience. 31: 2053-61. PMID 20497471 DOI: 10.1111/J.1460-9568.2010.07236.X  0.365
2009 Steidl S, Yeomans JS. M5 muscarinic receptor knockout mice show reduced morphine-induced locomotion but increased locomotion after cholinergic antagonism in the ventral tegmental area. The Journal of Pharmacology and Experimental Therapeutics. 328: 263-75. PMID 18849356 DOI: 10.1124/Jpet.108.144824  0.616
2008 Wang H, Liang S, Burgdorf J, Wess J, Yeomans J. Ultrasonic vocalizations induced by sex and amphetamine in M2, M4, M5 muscarinic and D2 dopamine receptor knockout mice. Plos One. 3: e1893. PMID 18382674 DOI: 10.1371/Journal.Pone.0001893  0.301
2007 Cain SW, Verwey M, Szybowska M, Ralph MR, Yeomans JS. Carbachol injections into the intergeniculate leaflet induce nonphotic phase shifts. Brain Research. 1177: 59-65. PMID 17920045 DOI: 10.1016/J.Brainres.2007.07.048  0.722
2006 Yeomans JS, Lee J, Yeomans MH, Steidl S, Li L. Midbrain pathways for prepulse inhibition and startle activation in rat. Neuroscience. 142: 921-9. PMID 16996220 DOI: 10.1016/J.Neuroscience.2006.06.025  0.645
2005 Miller AD, Forster GL, Yeomans JS, Blaha CD. Midbrain muscarinic receptors modulate morphine-induced accumbal and striatal dopamine efflux in the rat. Neuroscience. 136: 531-8. PMID 16216430 DOI: 10.1016/J.Neuroscience.2005.08.035  0.437
2005 Huang J, Wu X, Yeomans J, Li L. Opposite effects of tetanic stimulation of the auditory thalamus or auditory cortex on the acoustic startle reflex in awake rats European Journal of Neuroscience. 21: 1943-1956. PMID 15869487 DOI: 10.1111/j.1460-9568.2005.04030.x  0.421
2005 Michel FJ, Fortin GD, Martel P, Yeomans J, Trudeau LE. M3-like muscarinic receptors mediate Ca2+ influx in rat mesencephalic GABAergic neurones through a protein kinase C-dependent mechanism. Neuropharmacology. 48: 796-809. PMID 15829252 DOI: 10.1016/J.Neuropharm.2005.01.006  0.344
2004 Wang H, Ng K, Hayes D, Gao X, Forster G, Blaha C, Yeomans J. Decreased amphetamine-induced locomotion and improved latent inhibition in mice mutant for the M5 muscarinic receptor gene found in the human 15q schizophrenia region. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology. 29: 2126-39. PMID 15213703 DOI: 10.1038/Sj.Npp.1300502  0.63
2004 Steidl S, Faerman P, Li L, Yeomans JS. Kynurenate in the pontine reticular formation inhibits acoustic and trigeminal nucleus-evoked startle, but not vestibular nucleus-evoked startle. Neuroscience. 126: 127-36. PMID 15145079 DOI: 10.1016/J.Neuroscience.2004.03.020  0.66
2004 Cain SW, Verwey M, Hood S, Leknickas P, Karatsoreos I, Yeomans JS, Ralph MR. Reward and aversive stimuli produce similar nonphotic phase shifts. Behavioral Neuroscience. 118: 131-7. PMID 14979789 DOI: 10.1037/0735-7044.118.1.131  0.723
2003 Chintoh A, Fulton J, Koziel N, Aziz M, Sud M, Yeomans JS. Role of cholinergic receptors in locomotion induced by scopolamine and oxotremorine-M. Pharmacology, Biochemistry, and Behavior. 76: 53-61. PMID 13679217 DOI: 10.1016/S0091-3057(03)00196-5  0.406
2002 Lin C, Wan X, Zhao W, Ma C, Ma C, Gao Y, Zhou Y, Yeomans JS, Li L. Enhancement of electrically evoked startle-like responses by tetanic stimulation of the superior colliculus. Neuroreport. 13: 1769-73. PMID 12395120 DOI: 10.1097/00001756-200210070-00015  0.408
2002 Takeuchi J, Fulton J, Jia ZP, Abramov-Newerly W, Jamot L, Sud M, Coward D, Ralph M, Roder J, Yeomans J. Increased drinking in mutant mice with truncated M5 muscarinic receptor genes. Pharmacology, Biochemistry, and Behavior. 72: 117-23. PMID 11900778 DOI: 10.1016/S0091-3057(01)00725-0  0.333
2002 Yeomans JS, Li L, Scott BW, Frankland PW. Tactile, acoustic and vestibular systems sum to elicit the startle reflex. Neuroscience and Biobehavioral Reviews. 26: 1-11. PMID 11835980 DOI: 10.1016/S0149-7634(01)00057-4  0.721
2002 Forster GL, Yeomans JS, Takeuchi J, Blaha CD. M5 muscarinic receptors are required for prolonged accumbal dopamine release after electrical stimulation of the pons in mice. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 22: RC190. PMID 11756520 DOI: 10.1523/Jneurosci.22-01-J0001.2002  0.428
2001 Li L, Steidl S, Yeomans JS. Contributions of the vestibular nucleus and vestibulospinal tract to the startle reflex. Neuroscience. 106: 811-21. PMID 11682166 DOI: 10.1016/S0306-4522(01)00324-4  0.651
2001 Fendt M, Li L, Yeomans JS. Brain stem circuits mediating prepulse inhibition of the startle reflex. Psychopharmacology. 156: 216-24. PMID 11549224 DOI: 10.1007/S002130100794  0.323
2001 Steidl S, Li L, Yeomans JS. Conditioned brain-stimulation reward attenuates the acoustic startle reflex in rats. Behavioral Neuroscience. 115: 710-7. PMID 11439460 DOI: 10.1037//0735-7044.115.3.710  0.586
2001 Yeomans J, Forster G, Blaha C. M5 muscarinic receptors are needed for slow activation of dopamine neurons and for rewarding brain stimulation Life Sciences. 68: 2449-2456. PMID 11392612 DOI: 10.1016/S0024-3205(01)01038-4  0.459
2000 Yeomans JS, Takeuchi J, Baptista M, Flynn DD, Lepik K, Nobrega J, Fulton J, Ralph MR. Brain-stimulation reward thresholds raised by an antisense oligonucleotide for the M5 muscarinic receptor infused near dopamine cells. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 20: 8861-7. PMID 11102495 DOI: 10.1523/Jneurosci.20-23-08861.2000  0.421
2000 Li L, Yeomans JS. Using intracranial electrical stimulation to study the timing of prepulse inhibition of the startle reflex. Brain Research. Brain Research Protocols. 5: 67-74. PMID 10719267 DOI: 10.1016/S1385-299X(99)00056-2  0.381
2000 Laviolette SR, Priebe RP, Yeomans JS. Role of the laterodorsal tegmental nucleus in scopolamine- and amphetamine-induced locomotion and stereotypy. Pharmacology, Biochemistry, and Behavior. 65: 163-74. PMID 10638650 DOI: 10.1016/S0091-3057(99)00195-1  0.376
1999 Li L, Fulton JD, Yeomans JS. Effects of bilateral electrical stimulation of the ventral pallidum on acoustic startle. Brain Research. 836: 164-72. PMID 10415415 DOI: 10.1016/S0006-8993(99)01651-0  0.401
1999 Scott BW, Frankland PW, Li L, Yeomans JS. Cochlear and trigeminal systems contributing to the startle reflex in rats. Neuroscience. 91: 1565-74. PMID 10391460 DOI: 10.1016/S0306-4522(98)00708-8  0.736
1999 Li L, Yeomans JS. Summation between acoustic and trigeminal stimuli evoking startle. Neuroscience. 90: 139-52. PMID 10188941 DOI: 10.1016/S0306-4522(98)00436-9  0.415
1999 Priebe R, Kumar A, Flynn D, Fulton J, Yeomans J. Antisense oligonucleotide for the m5 muscarinic receptor in the ventral tegmentum reduces M5 receptor density, but not scopolamine-induced locomotion Life Sciences. 64: 589. DOI: 10.1016/S0024-3205(99)90532-5  0.323
1998 Li L, Priebe RP, Yeomans JS. Prepulse inhibition of acoustic or trigeminal startle of rats by unilateral electrical stimulation of the inferior colliculus. Behavioral Neuroscience. 112: 1187-98. PMID 9829796 DOI: 10.1037//0735-7044.112.5.1187  0.385
1997 Mathur A, Shandarin A, LaViolette SR, Parker J, Yeomans JS. Locomotion and stereotypy induced by scopolamine: contributions of muscarinic receptors near the pedunculopontine tegmental nucleus. Brain Research. 775: 144-55. PMID 9439838 DOI: 10.1016/S0006-8993(97)00928-1  0.422
1997 Yeomans J, Baptista M. Both nicotinic and muscarinic receptors in ventral tegmental area contribute to brain-stimulation reward Pharmacology Biochemistry and Behavior. 57: 915-921. PMID 9259024 DOI: 10.1016/S0091-3057(96)00467-4  0.379
1997 Frankland PW, Josselyn SA, Bradwejn J, Vaccarino FJ, Yeomans JS. Activation of amygdala cholecystokininB receptors potentiates the acoustic startle response in the rat. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 17: 1838-47. PMID 9030642 DOI: 10.1523/Jneurosci.17-05-01838.1997  0.608
1997 Chapman CA, Yeomans JS, Blaha CD, Blackburn JR. Increased striatal dopamine efflux follows scopolamine administered systemically or to the tegmental pedunculopontine nucleus. Neuroscience. 76: 177-86. PMID 8971770 DOI: 10.1016/S0306-4522(96)00358-2  0.589
1997 Yeomans J, Takeuchi J, Baptista M, Lepik K, Nobreqa J, Ralph M. Muscarinic (m5) receptors in the ventral tegmental area are important for brain-stimulation reward Life Sciences. 60: 1203. DOI: 10.1016/S0024-3205(97)84378-0  0.38
1996 Frankland PW, Josselyn SA, Bradwejn J, Vaccarino FJ, Yeomans JS. Intracerebroventricular infusion of the CCKB receptor agonist pentagastrin potentiates acoustic startle. Brain Research. 733: 129-32. PMID 8891258 DOI: 10.1016/0006-8993(96)00756-1  0.597
1995 Yeomans JS, Frankland PW. The acoustic startle reflex: neurons and connections. Brain Research. Brain Research Reviews. 21: 301-14. PMID 8806018 DOI: 10.1016/0165-0173(96)00004-5  0.601
1995 Josselyn SA, Frankland PW, Petrisano S, Bush DE, Yeomans JS, Vaccarino FJ. The CCKB antagonist, L-365,260, attenuates fear-potentiated startle. Peptides. 16: 1313-5. PMID 8545257 DOI: 10.1016/0196-9781(95)02013-M  0.583
1995 Yeomans J. Electrically evoked behaviors: axons and synapses mapped with collision tests Behavioural Brain Research. 67: 121-132. PMID 7779287 DOI: 10.1016/0166-4328(94)00149-A  0.375
1995 Frankland PW, Scott BW, Yeomans JS. Axons and synapses mediating electrically evoked startle: collision tests and latency analysis. Brain Research. 670: 97-111. PMID 7719729 DOI: 10.1016/0006-8993(94)01220-C  0.706
1995 Frankland PW, Yeomans JS. Fear-potentiated startle and electrically evoked startle mediated by synapses in rostrolateral midbrain. Behavioral Neuroscience. 109: 669-80. PMID 7576211 DOI: 10.1037//0735-7044.109.4.669  0.614
1995 Fletcher PJ, Tampakeras M, Yeomans JS. Median raphe injections of 8-OH-DPAT lower frequency thresholds for lateral hypothalamic self-stimulation. Pharmacology, Biochemistry, and Behavior. 52: 65-71. PMID 7501680 DOI: 10.1016/0091-3057(94)00441-K  0.389
1994 Chapman CA, Yeomans JS. Motor cortex and pyramidal tract axons responsible for electrically evoked forelimb flexion: refractory periods and conduction velocities. Neuroscience. 59: 699-711. PMID 8008214 DOI: 10.1016/0306-4522(94)90188-0  0.576
1993 Hempel CM, Zhou SS, Chapman CA, Yeomans JS. Crossed reticular formation connections that mediate the startle reflex in rats. Brain Research. 617: 329-38. PMID 8402161 DOI: 10.1016/0006-8993(93)91101-W  0.588
1993 Yeomans JS, Cochrane KA. Collision-like interactions between acoustic and electrical signals that produce startle reflexes in reticular formation sites. Brain Research. 617: 320-8. PMID 8402160 DOI: 10.1016/0006-8993(93)91100-7  0.438
1993 Yeomans JS, Hempel CM, Chapman CA. Axons and synapses mediating startle-like responses evoked by electrical stimulation of the reticular formation in rats: symmetric and asymmetric collision effects. Brain Research. 617: 309-19. PMID 8402159 DOI: 10.1016/0006-8993(93)91099-E  0.596
1993 Yeomans JS, Pollard BA. Amygdala efferents mediating electrically evoked startle-like responses and fear potentiation of acoustic startle. Behavioral Neuroscience. 107: 596-610. PMID 8397864 DOI: 10.1037/0735-7044.107.4.596  0.433
1993 Buckenham KE, Yeomans JS. An uncrossed tectopontine pathway mediates ipsiversive circling. Behavioural Brain Research. 54: 11-22. PMID 8389183 DOI: 10.1016/0166-4328(93)90044-Q  0.438
1993 Yeomans JS, Mathur A, Tampakeras M. Rewarding brain stimulation: role of tegmental cholinergic neurons that activate dopamine neurons. Behavioral Neuroscience. 107: 1077-87. PMID 8136061 DOI: 10.1037/0735-7044.107.6.1077  0.377
1992 Yeomans JS, Buckenham KE. Electrically evoked turning: asymmetric and symmetric collision between anteromedial cortex and striatum. Brain Research. 570: 279-92. PMID 1617418 DOI: 10.1016/0006-8993(92)90592-W  0.401
1990 Kofman O, McGlynn SM, Olmstead MC, Yeomans JS. Differential effects of atropine, procaine and dopamine in the rat ventral tegmentum on lateral hypothalamic rewarding brain stimulation. Behavioural Brain Research. 38: 55-68. PMID 2346616 DOI: 10.1016/0166-4328(90)90024-9  0.44
1990 Yeomans JS. "Temporal summation decay" in hypothalamic self-stimulation: threshold changes at long intrapair intervals due to axonal subnormal periods. Behavioral Neuroscience. 104: 991-9. PMID 2178349 DOI: 10.1037/0735-7044.104.6.991  0.336
1989 Yeomans JS, Rosen JB, Barbeau J, Davis M. Double-pulse stimulation of startle-like responses in rats: refractory periods and temporal summation. Brain Research. 486: 147-58. PMID 2720426 DOI: 10.1016/0006-8993(89)91287-0  0.434
1989 Yeomans JS. Two substrates for medial forebrain bundle self-stimulation: myelinated axons and dopamine axons. Neuroscience and Biobehavioral Reviews. 13: 91-8. PMID 2682408 DOI: 10.1016/S0149-7634(89)80016-8  0.397
1988 Tehovnik EJ, Yeomans JS. Contraversive circling elicited from the internal capsule and substantia nigra: evidence for a continuous axon bundle mediating circling. Brain Research. 441: 269-80. PMID 3359236 DOI: 10.1016/0006-8993(88)91405-9  0.675
1988 Yeomans JS, Maidment NT, Bunney BS. Excitability properties of medial forebrain bundle axons of A9 and A10 dopamine cells. Brain Research. 450: 86-93. PMID 3261193 DOI: 10.1016/0006-8993(88)91547-8  0.387
1988 Kofman O, Yeomans JS. Cholinergic antagonists in ventral tegmentum elevate thresholds for lateral hypothalamic and brainstem self-stimulation. Pharmacology, Biochemistry, and Behavior. 31: 547-59. PMID 3251239 DOI: 10.1016/0091-3057(88)90229-8  0.418
1988 Yeomans JS, Tehovnik EJ. Turning responses evoked by stimulation of visuomotor pathways. Brain Research. 472: 235-59. PMID 3066436 DOI: 10.1016/0165-0173(88)90008-2  0.685
1987 Tehovnik EJ, Yeomans JS. Circling elicited from the anteromedial cortex and medial pons: refractory periods and summation. Brain Research. 407: 240-52. PMID 3567644 DOI: 10.1016/0006-8993(87)91102-4  0.682
1986 Tehovnik EJ, Yeomans JS. Two converging brainstem pathways mediating circling behavior. Brain Research. 385: 329-42. PMID 3779395 DOI: 10.1016/0006-8993(86)91080-2  0.701
1986 Yeomans J, Prior P, Bateman F. Current-distance relations of axons mediating circling elicited by midbrain stimulation Brain Research. 372: 95-106. PMID 3708361 DOI: 10.1016/0006-8993(86)91462-9  0.337
1985 Yeomans JS, Linney L. Longitudinal brainstem axons mediating circling: behavioral measurement of conduction velocity distributions. Behavioural Brain Research. 15: 121-35. PMID 4039595 DOI: 10.1016/0166-4328(85)90059-2  0.381
1985 Yeomans JS, Kofman O, McFarlane V. Cholinergic involvement in lateral hypothalamic rewarding brain stimulation. Brain Research. 329: 19-26. PMID 3872153 DOI: 10.1016/0006-8993(85)90508-6  0.438
1985 Yeomans J, Mercouris N, Ellard C. Behaviorally measured refractory periods are lengthened by reducing electrode tip exposure or raising current Behavioral Neuroscience. 99: 913-928. PMID 3843308 DOI: 10.1037//0735-7044.99.5.913  0.351
1983 Hawkins RD, Roll PL, Puerto A, Yeomans JS. Refractory periods of neurons mediating stimulation-elicited eating and brain stimulation reward: interval scale measurement and tests of a model of neural integration. Behavioral Neuroscience. 97: 416-32. PMID 6871032 DOI: 10.1037//0735-7044.97.3.416  0.395
1981 Gallistel CR, Shizgal P, Yeomans JS. A portrait of the substrate for self-stimulation. Psychological Review. 88: 228-73. PMID 6264530 DOI: 10.1037/0033-295X.88.3.228  0.705
Show low-probability matches.