Wolfgang Maass - Publications

Affiliations: 
Technische Universität Graz, Graz, Steiermark, Austria 
Area:
computation & theory

100 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2021 Salaj D, Subramoney A, Kraisnikovic C, Bellec G, Legenstein R, Maass W. Spike frequency adaptation supports network computations on temporally dispersed information. Elife. 10. PMID 34310281 DOI: 10.7554/eLife.65459  0.384
2020 Bellec G, Scherr F, Subramoney A, Hajek E, Salaj D, Legenstein R, Maass W. A solution to the learning dilemma for recurrent networks of spiking neurons. Nature Communications. 11: 3625. PMID 32681001 DOI: 10.1038/s41467-020-17236-y  0.482
2020 Papadimitriou CH, Vempala SS, Mitropolsky D, Collins M, Maass W. Brain computation by assemblies of neurons. Proceedings of the National Academy of Sciences of the United States of America. PMID 32518114 DOI: 10.1073/Pnas.2001893117  0.397
2019 Kaiser J, Hoff M, Konle A, Vasquez Tieck JC, Kappel D, Reichard D, Subramoney A, Legenstein R, Roennau A, Maass W, Dillmann R. Embodied Synaptic Plasticity With Online Reinforcement Learning. Frontiers in Neurorobotics. 13: 81. PMID 31632262 DOI: 10.3389/fnbot.2019.00081  0.376
2019 Pokorny C, Ison MJ, Rao A, Legenstein R, Papadimitriou C, Maass W. STDP Forms Associations between Memory Traces in Networks of Spiking Neurons. Cerebral Cortex (New York, N.Y. : 1991). PMID 31403679 DOI: 10.1093/Cercor/Bhz140  0.412
2019 Bohnstingl T, Scherr F, Pehle C, Meier K, Maass W. Neuromorphic Hardware Learns to Learn. Frontiers in Neuroscience. 13: 483. PMID 31178681 DOI: 10.3389/Fnins.2019.00483  0.406
2019 Yan Y, Kappel D, Neumaerker F, Partzsch J, Vogginger B, Hoeppner S, Furber S, Maass W, Legenstein R, Mayr C. Efficient Reward-Based Structural Plasticity on a SpiNNaker 2 Prototype. Ieee Transactions On Biomedical Circuits and Systems. PMID 30932847 DOI: 10.1109/Tbcas.2019.2906401  0.362
2018 Liu C, Bellec G, Vogginger B, Kappel D, Partzsch J, Neumärker F, Höppner S, Maass W, Furber SB, Legenstein R, Mayr CG. Memory-Efficient Deep Learning on a SpiNNaker 2 Prototype. Frontiers in Neuroscience. 12: 840. PMID 30505263 DOI: 10.3389/fnins.2018.00840  0.338
2018 Kappel D, Legenstein R, Habenschuss S, Hsieh M, Maass W. A Dynamic Connectome Supports the Emergence of Stable Computational Function of Neural Circuits through Reward-Based Learning. Eneuro. 5. PMID 29696150 DOI: 10.1523/ENEURO.0301-17.2018  0.358
2017 Jonke Z, Legenstein R, Habenschuss S, Maass W. Feedback inhibition shapes emergent computational properties of cortical microcircuit motifs. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. PMID 28760861 DOI: 10.1523/JNEUROSCI.2078-16.2017  0.467
2016 Maass W. Energy-efficient neural network chips approach human recognition capabilities. Proceedings of the National Academy of Sciences of the United States of America. PMID 27702894 DOI: 10.1073/pnas.1614109113  0.45
2016 Pecevski D, Maass W. Learning Probabilistic Inference through Spike-Timing-Dependent Plasticity. Eneuro. 3. PMID 27419214 DOI: 10.1523/ENEURO.0048-15.2016  0.399
2016 Jonke Z, Habenschuss S, Maass W. Solving Constraint Satisfaction Problems with Networks of Spiking Neurons. Frontiers in Neuroscience. 10: 118. PMID 27065785 DOI: 10.3389/fnins.2016.00118  0.472
2016 Maass W. Searching for principles of brain computation Current Opinion in Behavioral Sciences. 11: 81-92. DOI: 10.1016/J.Cobeha.2016.06.003  0.475
2015 Kappel D, Habenschuss S, Legenstein R, Maass W. Network Plasticity as Bayesian Inference. Plos Computational Biology. 11: e1004485. PMID 26545099 DOI: 10.1371/journal.pcbi.1004485  0.455
2015 Bill J, Buesing L, Habenschuss S, Nessler B, Maass W, Legenstein R. Distributed Bayesian Computation and Self-Organized Learning in Sheets of Spiking Neurons with Local Lateral Inhibition. Plos One. 10: e0134356. PMID 26284370 DOI: 10.1371/Journal.Pone.0134356  0.765
2014 Legenstein R, Maass W. Ensembles of spiking neurons with noise support optimal probabilistic inference in a dynamically changing environment. Plos Computational Biology. 10: e1003859. PMID 25340749 DOI: 10.1371/journal.pcbi.1003859  0.504
2014 Kappel D, Nessler B, Maass W. STDP installs in Winner-Take-All circuits an online approximation to hidden Markov model learning. Plos Computational Biology. 10: e1003511. PMID 24675787 DOI: 10.1371/Journal.Pcbi.1003511  0.743
2014 Hoerzer GM, Legenstein R, Maass W. Emergence of complex computational structures from chaotic neural networks through reward-modulated Hebbian learning. Cerebral Cortex (New York, N.Y. : 1991). 24: 677-90. PMID 23146969 DOI: 10.1093/cercor/bhs348  0.488
2014 Maass W. Noise as a resource for computation and learning in networks of spiking neurons Proceedings of the Ieee. 102: 860-880. DOI: 10.1109/JPROC.2014.2310593  0.367
2013 Habenschuss S, Jonke Z, Maass W. Stochastic computations in cortical microcircuit models. Plos Computational Biology. 9: e1003311. PMID 24244126 DOI: 10.1371/journal.pcbi.1003311  0.45
2013 Klampfl S, Maass W. Emergence of dynamic memory traces in cortical microcircuit models through STDP. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 33: 11515-29. PMID 23843522 DOI: 10.1523/Jneurosci.5044-12.2013  0.762
2013 Nessler B, Pfeiffer M, Buesing L, Maass W. Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity. Plos Computational Biology. 9: e1003037. PMID 23633941 DOI: 10.1371/Journal.Pcbi.1003037  0.796
2013 Habenschuss S, Puhr H, Maass W. Emergence of optimal decoding of population codes through STDP. Neural Computation. 25: 1371-407. PMID 23517096 DOI: 10.1162/NECO_a_00446  0.493
2013 Habenschuss S, Jonke Z, Maass W. Solving Sudoku, a constraint satisfaction problem, through structured interactions between stochastically firing excitatory and inhibitory neurons. Plos Computational Biology. DOI: 10.1371/Journal.Pcbi.1003311.G005  0.362
2012 Rückert EA, Neumann G, Toussaint M, Maass W. Learned graphical models for probabilistic planning provide a new class of movement primitives. Frontiers in Computational Neuroscience. 6: 97. PMID 23293598 DOI: 10.3389/fncom.2012.00097  0.377
2012 Hauser H, Ijspeert AJ, Füchslin RM, Pfeifer R, Maass W. The role of feedback in morphological computation with compliant bodies. Biological Cybernetics. 106: 595-613. PMID 22956025 DOI: 10.1007/S00422-012-0516-4  0.318
2012 Pfeiffer M, Hartbauer M, Lang AB, Maass W, Römer H. Probing real sensory worlds of receivers with unsupervised clustering. Plos One. 7: e37354. PMID 22701566 DOI: 10.1371/Journal.Pone.0037354  0.546
2012 Klampfl S, David SV, Yin P, Shamma SA, Maass W. A quantitative analysis of information about past and present stimuli encoded by spikes of A1 neurons. Journal of Neurophysiology. 108: 1366-80. PMID 22696538 DOI: 10.1152/Jn.00935.2011  0.757
2012 Hauser H, Ijspeert AJ, Füchslin RM, Pfeifer R, Maass W. Towards a theoretical foundation for morphological computation with compliant bodies. Biological Cybernetics. PMID 22290137 DOI: 10.1007/S00422-012-0471-0  0.344
2011 Pecevski D, Buesing L, Maass W. Probabilistic inference in general graphical models through sampling in stochastic networks of spiking neurons. Plos Computational Biology. 7: e1002294. PMID 22219717 DOI: 10.1371/journal.pcbi.1002294  0.498
2011 Buesing L, Bill J, Nessler B, Maass W. Neural dynamics as sampling: a model for stochastic computation in recurrent networks of spiking neurons. Plos Computational Biology. 7: e1002211. PMID 22096452 DOI: 10.1371/Journal.Pcbi.1002211  0.763
2011 Legenstein R, Maass W. Branch-specific plasticity enables self-organization of nonlinear computation in single neurons. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 31: 10787-802. PMID 21795531 DOI: 10.1523/JNEUROSCI.5684-10.2011  0.467
2011 Rasch MJ, Schuch K, Logothetis NK, Maass W. Statistical comparison of spike responses to natural stimuli in monkey area V1 with simulated responses of a detailed laminar network model for a patch of V1. Journal of Neurophysiology. 105: 757-78. PMID 21106898 DOI: 10.1152/Jn.00845.2009  0.76
2010 Bill J, Schuch K, Brüderle D, Schemmel J, Maass W, Meier K. Compensating Inhomogeneities of Neuromorphic VLSI Devices Via Short-Term Synaptic Plasticity. Frontiers in Computational Neuroscience. 4: 129. PMID 21031027 DOI: 10.3389/Fncom.2010.00129  0.387
2010 Klampfl S, Maass W. A theoretical basis for emergent pattern discrimination in neural systems through slow feature extraction. Neural Computation. 22: 2979-3035. PMID 20858129 DOI: 10.1162/Neco_A_00050  0.785
2010 Legenstein R, Chase SM, Schwartz AB, Maass W. A reward-modulated hebbian learning rule can explain experimentally observed network reorganization in a brain control task. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 30: 8400-10. PMID 20573887 DOI: 10.1523/JNEUROSCI.4284-09.2010  0.459
2010 Buesing L, Maass W. A spiking neuron as information bottleneck. Neural Computation. 22: 1961-92. PMID 20337537 DOI: 10.1162/neco.2010.08-09-1084  0.511
2010 Pfeiffer M, Nessler B, Douglas RJ, Maass W. Reward-modulated Hebbian learning of decision making. Neural Computation. 22: 1399-444. PMID 20141476 DOI: 10.1162/Neco.2010.03-09-980  0.788
2009 Legenstein R, Chase SM, Schwartz AB, Maass W. Functional network reorganization in motor cortex can be explained by reward-modulated Hebbian learning. Advances in Neural Information Processing Systems. 2009: 1105-1113. PMID 25284966  0.356
2009 Nikolić D, Häusler S, Singer W, Maass W. Distributed fading memory for stimulus properties in the primary visual cortex. Plos Biology. 7: e1000260. PMID 20027205 DOI: 10.1371/journal.pbio.1000260  0.437
2009 Steimer A, Maass W, Douglas R. Belief propagation in networks of spiking neurons. Neural Computation. 21: 2502-23. PMID 19548806 DOI: 10.1162/neco.2009.08-08-837  0.615
2009 Haeusler S, Schuch K, Maass W. Motif distribution, dynamical properties, and computational performance of two data-based cortical microcircuit templates. Journal of Physiology, Paris. 103: 73-87. PMID 19500669 DOI: 10.1016/j.jphysparis.2009.05.006  0.435
2009 Buonomano DV, Maass W. State-dependent computations: spatiotemporal processing in cortical networks. Nature Reviews. Neuroscience. 10: 113-25. PMID 19145235 DOI: 10.1038/nrn2558  0.436
2009 Klampfl S, Legenstein R, Maass W. Spiking neurons can learn to solve information bottleneck problems and extract independent components. Neural Computation. 21: 911-59. PMID 19018708 DOI: 10.1162/Neco.2008.01-07-432  0.78
2009 Buesing L, Maass W. Simplified rules and theoretical analysis for Information Bottleneck Optimization and PCA with spiking neurons Advances in Neural Information Processing Systems 20 - Proceedings of the 2007 Conference 0.327
2009 Nessler B, Pfeiffer M, Maass W. STDP enables spiking neurons to detect hidden causes of their inputs Advances in Neural Information Processing Systems 22 - Proceedings of the 2009 Conference. 1357-1365.  0.751
2009 Nessler B, Pfeiffer M, Maass W. Hebbian learning of Bayes optimal decisions Advances in Neural Information Processing Systems 21 - Proceedings of the 2008 Conference. 1169-1176.  0.714
2009 Klampfl S, Maass W. Replacing supervised classification learning by slow feature analysis in spiking neural networks Advances in Neural Information Processing Systems 22 - Proceedings of the 2009 Conference. 988-996.  0.74
2008 Legenstein R, Pecevski D, Maass W. A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback. Plos Computational Biology. 4: e1000180. PMID 18846203 DOI: 10.1371/journal.pcbi.1000180  0.506
2008 Auer P, Burgsteiner H, Maass W. A learning rule for very simple universal approximators consisting of a single layer of perceptrons. Neural Networks : the Official Journal of the International Neural Network Society. 21: 786-95. PMID 18249524 DOI: 10.1016/j.neunet.2007.12.036  0.43
2008 Rasch MJ, Gretton A, Murayama Y, Maass W, Logothetis NK. Inferring spike trains from local field potentials. Journal of Neurophysiology. 99: 1461-76. PMID 18160425 DOI: 10.1152/Jn.00919.2007  0.74
2008 Legenstein R, Maass W. On the classification capability of sign-constrained perceptrons. Neural Computation. 20: 288-309. PMID 18045010 DOI: 10.1162/neco.2008.20.1.288  0.441
2007 Legenstein R, Maass W. Edge of chaos and prediction of computational performance for neural circuit models. Neural Networks : the Official Journal of the International Neural Network Society. 20: 323-34. PMID 17517489 DOI: 10.1016/j.neunet.2007.04.017  0.416
2007 Sussillo D, Toyoizumi T, Maass W. Self-tuning of neural circuits through short-term synaptic plasticity. Journal of Neurophysiology. 97: 4079-95. PMID 17409166 DOI: 10.1152/Jn.01357.2006  0.428
2007 Maass W, Joshi P, Sontag ED. Computational aspects of feedback in neural circuits. Plos Computational Biology. 3: e165. PMID 17238280 DOI: 10.1371/Journal.Pcbi.0020165  0.659
2007 Haeusler S, Maass W. A statistical analysis of information-processing properties of lamina-specific cortical microcircuit models. Cerebral Cortex (New York, N.Y. : 1991). 17: 149-62. PMID 16481565 DOI: 10.1093/cercor/bhj132  0.445
2007 Klampfl S, Legenstein R, Maass W. Information bottleneck optimization and independent component extraction with spiking neurons Advances in Neural Information Processing Systems. 713-720.  0.738
2007 Neumann G, Pfeiffer M, Maass W. Efficient continuous-time reinforcement learning with adaptive state graphs Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 4701: 250-261.  0.431
2006 Uchizawa K, Douglas R, Maass W. On the computational power of threshold circuits with sparse activity. Neural Computation. 18: 2994-3008. PMID 17052156 DOI: 10.1162/neco.2006.18.12.2994  0.573
2006 Kaske A, Maass W. A model for the interaction of oscillations and pattern generation with real-time computing in generic neural microcircuit models. Neural Networks : the Official Journal of the International Neural Network Society. 19: 600-9. PMID 16150571 DOI: 10.1016/j.neunet.2005.06.047  0.471
2006 Uchizawa K, Douglas R, Maass W. Energy complexity and entropy of threshold circuits Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 4051: 631-642. DOI: 10.1007/11786986_55  0.427
2005 Legenstein R, Naeger C, Maass W. What can a neuron learn with spike-timing-dependent plasticity? Neural Computation. 17: 2337-82. PMID 16156932 DOI: 10.1162/0899766054796888  0.493
2005 Natschläger T, Maass W. Dynamics of information and emergent computation in generic neural microcircuit models. Neural Networks : the Official Journal of the International Neural Network Society. 18: 1301-8. PMID 16150570 DOI: 10.1016/j.neunet.2005.05.004  0.488
2005 Joshi P, Maass W. Movement generation with circuits of spiking neurons. Neural Computation. 17: 1715-38. PMID 15969915 DOI: 10.1162/0899766054026684  0.597
2005 Legenstein RA, Maass W. Wire length as a circuit complexity measure Journal of Computer and System Sciences. 70: 53-72. DOI: 10.1016/j.jcss.2004.06.001  0.305
2004 Maass W, Natschläger T, Markram H. Fading memory and kernel properties of generic cortical microcircuit models. Journal of Physiology, Paris. 98: 315-30. PMID 16310350 DOI: 10.1016/j.jphysparis.2005.09.020  0.471
2004 Melamed O, Gerstner W, Maass W, Tsodyks M, Markram H. Coding and learning of behavioral sequences. Trends in Neurosciences. 27: 11-4; discussion 14-. PMID 14698603 DOI: 10.1016/J.Tins.2003.10.014  0.315
2004 Maass W, Markram H. On the computational power of circuits of spiking neurons Journal of Computer and System Sciences. 69: 593-616. DOI: 10.1016/j.jcss.2004.04.001  0.435
2004 Joshi P, Maass W. Movement generation and control with generic neural microcircuits Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 3141: 258-273. DOI: 10.1007/978-3-540-27835-1_20  0.305
2004 Natschläger T, Maass W. Information dynamics and emergent computation in recurrent circuits of spiking neurons Advances in Neural Information Processing Systems 0.344
2003 Legenstein R, Markram H, Maass W. Input prediction and autonomous movement analysis in recurrent circuits of spiking neurons. Reviews in the Neurosciences. 14: 5-19. PMID 12929914 DOI: 10.1515/Revneuro.2003.14.1-2.5  0.448
2003 Häusler S, Markram H, Maass W. Perspectives of the high-dimensional dynamics of neural microcircuits from the point of view of low-dimensional readouts Complexity. 8: 39-50. DOI: 10.1002/cplx.10089  0.488
2002 Maass W, Natschläger T, Markram H. Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Computation. 14: 2531-60. PMID 12433288 DOI: 10.1162/089976602760407955  0.476
2002 Maass W, Markram H. Synapses as dynamic memory buffers. Neural Networks : the Official Journal of the International Neural Network Society. 15: 155-61. PMID 12022505 DOI: 10.1016/S0893-6080(01)00144-7  0.409
2002 Natschläger T, Maass W. Spiking neurons and the induction of finite state machines Theoretical Computer Science. 287: 251-265. DOI: 10.1016/S0304-3975(02)00099-3  0.438
2002 Legenstein RA, Maass W. Neural circuits for pattern recognition with small total wire length Theoretical Computer Science. 287: 239-249. DOI: 10.1016/S0304-3975(02)00097-X  0.308
2001 Natschläger T, Maass W. Computing the optimally fitted spike train for a synapse. Neural Computation. 13: 2477-94. PMID 11674847 DOI: 10.1162/089976601753195987  0.405
2001 Natschläger T, Maass W, Zador A. Efficient temporal processing with biologically realistic dynamic synapses Network: Computation in Neural Systems. 12: 75-87. DOI: 10.1088/0954-898X/12/1/305  0.392
2001 Grossberg S, Maass W, Markram H. Introduction: Spiking neurons in neuroscience and technology Neural Networks. 14: 587. DOI: 10.1016/S0893-6080(01)00102-2  0.387
2000 Maass W. On the computational power of winner-take-all. Neural Computation. 12: 2519-35. PMID 11110125 DOI: 10.1162/089976600300014827  0.412
2000 Maass W, Sontag ED. Neural systems as nonlinear filters. Neural Computation. 12: 1743-72. PMID 10953237 DOI: 10.1162/089976600300015123  0.362
2000 Maass W, Natschläger T. A model for fast analog computation based on unreliable synapses. Neural Computation. 12: 1679-704. PMID 10935922 DOI: 10.1162/089976600300015303  0.5
1999 Maass W, Zador AM. Dynamic stochastic synapses as computational units. Neural Computation. 11: 903-17. PMID 10226188  0.326
1999 Maass W, Schmitt M. On the Complexity of Learning for Spiking Neurons with Temporal Coding Information and Computation. 153: 26-46. DOI: 10.1006/Inco.1999.2806  0.512
1999 Maass W, Ruf B. On Computation with Pulses Information and Computation. 148: 202-218. DOI: 10.1006/Inco.1998.2743  0.335
1998 Maass W. A simple model for neural computation with firing rates and firing correlations. Network (Bristol, England). 9: 381-97. PMID 9861997 DOI: 10.1088/0954-898X_9_3_007  0.419
1998 Maass W, Warmuth MK. Efficient Learning with Virtual Threshold Gates Information and Computation. 141: 66-83. DOI: 10.1006/Inco.1997.2686  0.326
1997 Maass W. Fast sigmoidal networks via spiking neurons. Neural Computation. 9: 279-304. PMID 9117904 DOI: 10.1162/Neco.1997.9.2.279  0.504
1997 Maass W. Bounds for the computational power and learning complexity of analog neural nets Siam Journal On Computing. 26: 708-732. DOI: 10.1137/S0097539793256041  0.394
1997 Maass W, Natschlager T. Networks of spiking neurons can emulate arbitrary Hopfield nets in temporal coding Network: Computation in Neural Systems. 8: 355-371. DOI: 10.1088/0954-898X_8_4_002  0.482
1997 Maass W. Networks of spiking neurons: The third generation of neural network models Neural Networks. 10: 1659-1671. DOI: 10.1016/S0893-6080(97)00011-7  0.319
1997 Maass W. Noisy spiking neurons with temporal coding have more computational power than sigmoidal neurons Advances in Neural Information Processing Systems. 211-217.  0.319
1996 Maass W. Lower Bounds for the Computational Power of Networks of Spiking Neurons Neural Computation. 8: 1-40. DOI: 10.1162/Neco.1996.8.1.1  0.498
1995 Maass W. Agnostic PAC Learning of Functions on Analog Neural Nets Neural Computation. 7: 1054-1078. DOI: 10.1162/neco.1995.7.5.1054  0.311
1995 Bultman WJ, Maass W. Fast Identification of Geometric Objects with Membership Queries Information and Computation. 118: 48-64. DOI: 10.1006/inco.1995.1051  0.343
1994 Maass W. Neural nets with superlinear VC-dimension Neural Computation. 6: 877-884. DOI: 10.1162/Neco.1994.6.5.877  0.311
1994 Maass W, Turán G. Algorithms and Lower Bounds for On-Line Learning of Geometrical Concepts Machine Learning. 14: 251-269. DOI: 10.1023/A:1022653511837  0.342
1993 Hajnal A, Maass W, Pudlák P, Szegedy M, Turán G. Threshold circuits of bounded depth Journal of Computer and System Sciences. 46: 129-154. DOI: 10.1016/0022-0000(93)90001-D  0.31
1989 Maass W, Slaman TA. Some Problems and Results in the Theory of Actually Computable Functions (preliminary abstract) Studies in Logic and the Foundations of Mathematics. 127: 79-89. DOI: 10.1016/S0049-237X(08)70263-5  0.331
Show low-probability matches.