Year |
Citation |
Score |
2020 |
Feo F, Huang Y, Volzone B. Long-time asymptotics for a 1D nonlocal porous medium equation with absorption or convection Communications in Contemporary Mathematics. 22: 1950015. DOI: 10.1142/S0219199719500159 |
0.426 |
|
2018 |
Carrillo JA, Huang Y, Schmidtchen M. Zoology of a non-local cross-diffusion model for two species Siam Journal On Applied Mathematics. 78: 1078-1104. DOI: 10.1137/17M1128782 |
0.374 |
|
2018 |
Wang X, Shang W, Li X, Duan J, Huang Y. Fokker-Planck equation driven by asymmetric Lévy motion Advances in Computational Mathematics. 45: 787-811. DOI: 10.1007/S10444-018-9642-4 |
0.48 |
|
2016 |
Carrillo JA, Huang Y, Patacchini FS, Wolansky G. Numerical Study of a Particle Method for Gradient Flows Kinetic and Related Models. 10: 613-641. DOI: 10.3934/Krm.2017025 |
0.354 |
|
2016 |
Carrillo JA, Huang Y. Explicit equilibrium solutions for the aggregation equation with power-law potentials Kinetic and Related Models. 10: 171-192. DOI: 10.3934/Krm.2017007 |
0.538 |
|
2015 |
Carrillo JA, Chertock A, Huang Y. A finite-volume method for nonlinear nonlocal equations with a gradient flow structure Communications in Computational Physics. 17: 233-258. DOI: 10.4208/Cicp.160214.010814A |
0.475 |
|
2015 |
Carrillo JA, Huang Y, Santos MC, Vázquez JL. Exponential convergence towards stationary states for the 1D porous medium equation with fractional pressure Journal of Differential Equations. 258: 736-763. DOI: 10.1016/J.Jde.2014.10.003 |
0.493 |
|
2014 |
Huang Y, Oberman A. Numerical methods for the fractional Laplacian: A finite difference-quadrature approach? Siam Journal On Numerical Analysis. 52: 3056-3084. DOI: 10.1137/140954040 |
0.431 |
|
2014 |
Burger M, Fetecau R, Huang Y. Stationary states and asymptotic behavior of aggregation models with nonlinear local repulsion Siam Journal On Applied Dynamical Systems. 13: 397-424. DOI: 10.1137/130923786 |
0.449 |
|
2014 |
Huang Y. Explicit Barenblatt profiles for fractional porous medium equations Bulletin of the London Mathematical Society. 46: 857-869. DOI: 10.1112/Blms/Bdu045 |
0.527 |
|
2014 |
Carrillo JA, Huang Y, Martin S. Explicit flock solutions for Quasi-Morse potentials European Journal of Applied Mathematics. 25: 553-578. DOI: 10.1017/S0956792514000126 |
0.406 |
|
2014 |
Carrillo JA, Huang Y, Martin S. Nonlinear stability of flock solutions in second-order swarming models Nonlinear Analysis-Real World Applications. 17: 332-343. DOI: 10.1016/J.Nonrwa.2013.12.008 |
0.418 |
|
2013 |
Fetecau RC, Huang Y. Equilibria of biological aggregations with nonlocal repulsive-attractive interactions Physica D: Nonlinear Phenomena. 260: 49-64. DOI: 10.1016/J.Physd.2012.11.004 |
0.512 |
|
2013 |
Kolokolnikov T, Huang Y, Pavlovski M. Singular patterns for an aggregation model with a confining potential Physica D: Nonlinear Phenomena. 260: 65-76. DOI: 10.1016/J.Physd.2012.10.009 |
0.424 |
|
2012 |
Huang Y, Bertozzi A. Asymptotics of blowup solutions for the aggregation equation Discrete and Continuous Dynamical Systems - Series B. 17: 1309-1331. DOI: 10.3934/Dcdsb.2012.17.1309 |
0.585 |
|
2012 |
Huang Y, Witelski TP, Bertozzi AL. Anomalous exponents of self-similar blow-up solutions to an aggregation equation in odd dimensions Applied Mathematics Letters. 25: 2317-2321. DOI: 10.1016/J.Aml.2012.06.023 |
0.616 |
|
2011 |
Fetecau RC, Huang Y, Kolokolnikov T. Swarm dynamics and equilibria for a nonlocal aggregation model Nonlinearity. 24: 2681-2716. DOI: 10.1088/0951-7715/24/10/002 |
0.551 |
|
2010 |
Huang Y, Bertozzi AL. Self-similar blowup solutions to an aggregation equation in Rn Siam Journal On Applied Mathematics. 70: 2582-2603. DOI: 10.1137/090774495 |
0.594 |
|
2009 |
Dimits AM, Wang C, Caflisch R, Cohen BI, Huang Y. Understanding the accuracy of Nanbu's numerical Coulomb collision operator Journal of Computational Physics. 228: 4881-4892. DOI: 10.1016/J.Jcp.2009.03.041 |
0.347 |
|
2008 |
Tan Z, Huang Y. An alternating Crank–Nicolson method for the numerical solution of the phase‐field equations using adaptive moving meshes International Journal For Numerical Methods in Fluids. 56: 1673-1693. DOI: 10.1002/Fld.1568 |
0.5 |
|
Show low-probability matches. |