Year |
Citation |
Score |
2020 |
Bedrossian J, Wang F. The Linearized Vlasov and Vlasov-Fokker-Planck Equations in a Uniform Magnetic Field Journal of Statistical Physics. 178: 552-594. DOI: 10.1007/S10955-019-02441-X |
0.313 |
|
2020 |
Bedrossian J, He S. Inviscid Damping and Enhanced Dissipation of the Boundary Layer for 2D Navier–Stokes Linearized Around Couette Flow in a Channel Communications in Mathematical Physics. 1-50. DOI: 10.1007/S00220-020-03851-9 |
0.321 |
|
2020 |
Bedrossian J, Zelati MC, Punshon-Smith S, Weber F. Sufficient Conditions for Dual Cascade Flux Laws in the Stochastic 2d Navier-Stokes Equations Archive For Rational Mechanics and Analysis. 237: 103-145. DOI: 10.1007/S00205-020-01503-9 |
0.4 |
|
2019 |
Bedrossian J, Zelati MC, Punshon-Smith S, Weber F. A Sufficient Condition for the Kolmogorov 4/5 Law for Stationary Martingale Solutions to the 3D Navier–Stokes Equations Communications in Mathematical Physics. 367: 1045-1075. DOI: 10.1007/S00220-019-03396-6 |
0.401 |
|
2018 |
Bedrossian J, He S. ERRATUM: Suppression of Blow-Up in Patlak--Keller--Segel Via Shear Flows Siam Journal On Mathematical Analysis. 50: 6365-6372. DOI: 10.1137/18M1193293 |
0.322 |
|
2018 |
Bedrossian J, Germain P, Masmoudi N. Stability of the Couette flow at high Reynolds numbers in two dimensions and three dimensions Bulletin of the American Mathematical Society. 56: 373-414. DOI: 10.1090/Bull/1649 |
0.308 |
|
2018 |
Bedrossian J, Vicol V, Wang F. The Sobolev Stability Threshold for 2D Shear Flows Near Couette Journal of Nonlinear Science. 28: 2051-2075. DOI: 10.1007/S00332-016-9330-9 |
0.401 |
|
2017 |
Bedrossian J, Germain P, Masmoudi N. On the stability threshold for the 3D Couette flow in Sobolev regularity Annals of Mathematics. 185: 541-608. DOI: 10.4007/Annals.2017.185.2.4 |
0.339 |
|
2017 |
Bedrossian J, He S. Suppression of Blow-Up in Patlak--Keller--Segel Via Shear Flows Siam Journal On Mathematical Analysis. 49: 4722-4766. DOI: 10.1137/16M1093380 |
0.417 |
|
2017 |
Bedrossian J, Zelati MC. Enhanced Dissipation, Hypoellipticity, and Anomalous Small Noise Inviscid Limits in Shear Flows Archive For Rational Mechanics and Analysis. 224: 1161-1204. DOI: 10.1007/S00205-017-1099-Y |
0.434 |
|
2016 |
Bedrossian J, Zelati MC, Glatt-Holtz N. Invariant Measures for Passive Scalars in the Small Noise Inviscid Limit Communications in Mathematical Physics. 348: 101-127. DOI: 10.1007/S00220-016-2758-9 |
0.353 |
|
2016 |
Bedrossian J, Masmoudi N, Vicol V. Enhanced Dissipation and Inviscid Damping in the Inviscid Limit of the Navier–Stokes Equations Near the Two Dimensional Couette Flow Archive For Rational Mechanics and Analysis. 219: 1087-1159. DOI: 10.1007/S00205-015-0917-3 |
0.433 |
|
2015 |
Azzam J, Bedrossian J. Bounded mean oscillation and the uniqueness of active scalar equations Transactions of the American Mathematical Society. 367: 3095-3118. DOI: 10.1090/S0002-9947-2014-06040-6 |
0.342 |
|
2015 |
Bedrossian J. Large Mass Global Solutions for a Class of L 1-Critical Nonlocal Aggregation Equations and Parabolic-Elliptic Patlak-Keller-Segel Models Communications in Partial Differential Equations. 40: 1119-1136. DOI: 10.1080/03605302.2014.999938 |
0.451 |
|
2015 |
Bedrossian J, Masmoudi N. Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations Publications Mathematiques De L'Institut Des Hautes Etudes Scientifiques. 122: 195-300. DOI: 10.1007/S10240-015-0070-4 |
0.44 |
|
2014 |
Bedrossian J, Rodríguez N. Inhomogeneous Patlak-Keller-Segel models and aggregation equations with nonlinear diffusion in Rd Discrete and Continuous Dynamical Systems - Series B. 19: 1279-1309. DOI: 10.3934/Dcdsb.2014.19.1279 |
0.572 |
|
2014 |
Bedrossian J, Masmoudi N. Asymptotic stability for the couette flow in the 2d euler equations Applied Mathematics Research Express. 2014: 157-175. DOI: 10.1093/Amrx/Abt009 |
0.411 |
|
2014 |
Bedrossian J, Masmoudi N. Existence, Uniqueness and Lipschitz Dependence for Patlak–Keller–Segel and Navier–Stokes in ℝ2 with Measure-Valued Initial Data Archive For Rational Mechanics and Analysis. 214: 717-801. DOI: 10.1007/S00205-014-0796-Z |
0.379 |
|
2013 |
Bedrossian J, Kim IC. Global existence and finite time blow-up for critical patlak-keller-segel models with inhomogeneous diffusion Siam Journal On Mathematical Analysis. 45: 934-964. DOI: 10.1137/120882731 |
0.462 |
|
2011 |
Bedrossian J. Intermediate asymptotics for critical and supercritical aggregation equations and Patlak-Keller-Segel models Communications in Mathematical Sciences. 9: 1143-1161. DOI: 10.4310/Cms.2011.V9.N4.A11 |
0.373 |
|
2011 |
Bedrossian J, Rodríguez N, Bertozzi AL. Local and global well-posedness for aggregation equations and Patlak-Keller-Segel models with degenerate diffusion Nonlinearity. 24: 1683-1714. DOI: 10.1088/0951-7715/24/6/001 |
0.6 |
|
2011 |
Bedrossian J. Global minimizers for free energies of subcritical aggregation equations with degenerate diffusion Applied Mathematics Letters. 24: 1927-1932. DOI: 10.1016/J.Aml.2011.05.022 |
0.458 |
|
2010 |
Bedrossian J, Brecht JHv, Zhu S, Sifakis E, Teran JM. A second order virtual node method for elliptic problems with interfaces and irregular domains Journal of Computational Physics. 229: 6405-6426. DOI: 10.1016/J.Jcp.2010.05.002 |
0.337 |
|
Show low-probability matches. |