Year |
Citation |
Score |
2019 |
Chen N, Lee DKK, Negahban SN. Super-resolution estimation of cyclic arrival rates Annals of Statistics. 47: 1754-1775. DOI: 10.1214/18-Aos1736 |
0.339 |
|
2018 |
Elenberg ER, Khanna R, Dimakis AG, Negahban SN. Restricted strong convexity implies weak submodularity Annals of Statistics. 46: 3539-3568. DOI: 10.1214/17-Aos1679 |
0.304 |
|
2018 |
Shaham U, Yamada Y, Negahban S. Understanding Adversarial Training: Increasing Local Stability of Neural Nets through Robust Optimization Neurocomputing. 307: 195-204. DOI: 10.1016/J.Neucom.2018.04.027 |
0.33 |
|
2017 |
Negahban S, Oh S, Shah D. Rank Centrality: Ranking from Pairwise Comparisons Operations Research. 65: 266-287. DOI: 10.1287/Opre.2016.1534 |
0.345 |
|
2014 |
Agarwal A, Negahban SN, Wainwright MJ. Stochastic optimization and sparse statistical recovery: An optimal algorithm for high dimensions 2014 48th Annual Conference On Information Sciences and Systems, Ciss 2014. DOI: 10.1109/CISS.2014.6814157 |
0.455 |
|
2013 |
Brink H, Richards JW, Poznanski D, Bloom JS, Rice J, Negahban S, Wainwright M. Using machine learning for discovery in synoptic survey imaging data Monthly Notices of the Royal Astronomical Society. 435: 1047-1060. DOI: 10.1093/Mnras/Stt1306 |
0.451 |
|
2012 |
Negahban SN, Ravikumar P, Wainwright MJ, Yu B. A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers Statistical Science. 27: 538-557. DOI: 10.1214/12-Sts400 |
0.554 |
|
2012 |
Agarwal A, Negahban S, Wainwright MJ. Fast global convergence of gradient methods for high-dimensional statistical recovery Annals of Statistics. 40: 2452-2482. DOI: 10.1214/12-Aos1032 |
0.546 |
|
2012 |
Agarwal A, Negahban S, Wainwright MJ. Noisy matrix decomposition via convex relaxation: Optimal rates in high dimensions Annals of Statistics. 40: 1171-1197. DOI: 10.1214/12-Aos1000 |
0.578 |
|
2012 |
Agarwal A, Negahban S, Wainwright MJ. FASt global convergence of gradient methods for solving regularized M-estimation 2012 Ieee Statistical Signal Processing Workshop, Ssp 2012. 409-412. DOI: 10.1109/SSP.2012.6319717 |
0.426 |
|
2012 |
Agarwal A, Negahban SN, Wainwright MJ. Stochastic optimization and sparse statistical recovery: Optimal algorithms for high dimensions Advances in Neural Information Processing Systems. 2: 1538-1546. |
0.455 |
|
2012 |
Negahban S, Wainwright MJ. Restricted strong convexity and weighted matrix completion: Optimal bounds with noise Journal of Machine Learning Research. 13: 1665-1697. |
0.43 |
|
2011 |
Negahban SN, Wainwright MJ. Simultaneous support recovery in high dimensions: Benefits and perils of block ℓ 1/ℓ∞-regularization Ieee Transactions On Information Theory. 57: 3841-3863. DOI: 10.1109/TIT.2011.2144150 |
0.421 |
|
2010 |
Negahban S, Wainwright MJ. Estimation of (near) low-rank matrices with noise and high-dimensional scaling Icml 2010 - Proceedings, 27th International Conference On Machine Learning. 823-830. DOI: 10.1214/10-Aos850 |
0.555 |
|
2009 |
Negahban S, Wainwright MJ. Joint support recovery under high-dimensional scaling: Benefits and perils of ℓ 1,∞-regularization Advances in Neural Information Processing Systems 21 - Proceedings of the 2008 Conference. 1161-1168. |
0.417 |
|
Show low-probability matches. |