Year |
Citation |
Score |
2024 |
Tanaka M, Kameda M, Okada KI. Temporal Information Processing in the Cerebellum and Basal Ganglia. Advances in Experimental Medicine and Biology. 1455: 95-116. PMID 38918348 DOI: 10.1007/978-3-031-60183-5_6 |
0.403 |
|
2024 |
Sawagashira R, Tanaka M. [Neural Mechanisms of Visual Search and Working Memory]. Brain and Nerve = Shinkei Kenkyu No Shinpo. 76: 709-714. PMID 38853498 DOI: 10.11477/mf.1416202667 |
0.748 |
|
2023 |
Kameda M, Niikawa K, Uematsu A, Tanaka M. Sensory and motor representations of internalized rhythms in the cerebellum and basal ganglia. Proceedings of the National Academy of Sciences of the United States of America. 120: e2221641120. PMID 37276394 DOI: 10.1073/pnas.2221641120 |
0.339 |
|
2022 |
Sawagashira R, Tanaka M. Nicotine promotes the utility of short-term memory during visual search in macaque monkeys. Psychopharmacology. 239: 3019-3029. PMID 35802143 DOI: 10.1007/s00213-022-06186-6 |
0.736 |
|
2022 |
Okada KI, Takeya R, Tanaka M. Neural signals regulating motor synchronization in the primate deep cerebellar nuclei. Nature Communications. 13: 2504. PMID 35523898 DOI: 10.1038/s41467-022-30246-2 |
0.417 |
|
2021 |
Takeya R, Nakamura S, Tanaka M. Spontaneous grouping of saccade timing in the presence of task-irrelevant objects. Plos One. 16: e0248530. PMID 33724997 DOI: 10.1371/journal.pone.0248530 |
0.362 |
|
2021 |
Sawagashira R, Tanaka M. Ketamine-induced alteration of working memory utility during oculomotor foraging task in monkeys. Eneuro. PMID 33688041 DOI: 10.1523/ENEURO.0403-20.2021 |
0.725 |
|
2021 |
Suzuki TW, Inoue KI, Takada M, Tanaka M. Effects of optogenetic suppression of cortical input on primate thalamic neuronal activity during goal-directed behavior. Eneuro. PMID 33658308 DOI: 10.1523/ENEURO.0511-20.2021 |
0.357 |
|
2020 |
Tanaka M, Kunimatsu J, Suzuki TW, Kameda M, Ohmae S, Uematsu A, Takeya R. Roles of the cerebellum in motor preparation and prediction of timing. Neuroscience. PMID 32360700 DOI: 10.1016/J.Neuroscience.2020.04.039 |
0.748 |
|
2020 |
Itoh TD, Takeya R, Tanaka M. Spatial and temporal adaptation of predictive saccades based on motion inference. Scientific Reports. 10: 5280. PMID 32210297 DOI: 10.1038/s41598-020-62211-8 |
0.431 |
|
2019 |
Kameda M, Ohmae S, Tanaka M. Entrained neuronal activity to periodic visual stimuli in the primate striatum compared with the cerebellum. Elife. 8. PMID 31490120 DOI: 10.7554/Elife.48702 |
0.41 |
|
2019 |
Miterko LN, Baker KB, Beckinghausen J, Bradnam LV, Cheng MY, Cooperrider J, DeLong MR, Gornati SV, Hallett M, Heck DH, Hoebeek FE, Kouzani AZ, Kuo SH, Louis ED, Machado A, ... ... Tanaka M, et al. Consensus Paper: Experimental Neurostimulation of the Cerebellum. Cerebellum (London, England). PMID 31165428 DOI: 10.1007/S12311-019-01041-5 |
0.306 |
|
2019 |
Osada T, Ohta S, Ogawa A, Tanaka M, Suda A, Kamagata K, Hori M, Aoki S, Shimo Y, Hattori N, Shimizu T, Enomoto H, Hanajima R, Ugawa Y, Konishi S. An essential role of the intraparietal sulcus in response inhibition predicted by parcellation-based network. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. PMID 30692225 DOI: 10.1523/JNEUROSCI.2244-18.2019 |
0.309 |
|
2019 |
Kameda M, Ohmae S, Tanaka M. Author response: Entrained neuronal activity to periodic visual stimuli in the primate striatum compared with the cerebellum Elife. DOI: 10.7554/Elife.48702.020 |
0.384 |
|
2018 |
Takeya R, Patel AD, Tanaka M. Temporal Generalization of Synchronized Saccades Beyond the Trained Range in Monkeys. Frontiers in Psychology. 9: 2172. PMID 30459693 DOI: 10.3389/fpsyg.2018.02172 |
0.429 |
|
2018 |
Kunimatsu J, Suzuki TW, Ohmae S, Tanaka M. Different contributions of preparatory activity in the basal ganglia and cerebellum for self-timing. Elife. 7. PMID 29963985 DOI: 10.7554/Elife.35676 |
0.73 |
|
2018 |
Kunimatsu J, Suzuki TW, Ohmae S, Tanaka M. Author response: Different contributions of preparatory activity in the basal ganglia and cerebellum for self-timing Elife. DOI: 10.7554/Elife.35676.026 |
0.669 |
|
2017 |
Tanaka M, Suzuki TW, Kameda M, Takeya R. [Neural Mechanisms of Temporal Monitoring and Prediction]. Brain and Nerve = Shinkei Kenkyu No Shinpo. 69: 1213-1222. PMID 29172187 DOI: 10.11477/mf.1416200898 |
0.333 |
|
2017 |
Suzuki TW, Tanaka M. Causal role of noradrenaline in the timing of internally-generated saccades in monkeys. Neuroscience. PMID 29024784 DOI: 10.1016/j.neuroscience.2017.10.003 |
0.496 |
|
2017 |
Takeya R, Kameda M, Patel AD, Tanaka M. Predictive and tempo-flexible synchronization to a visual metronome in monkeys. Scientific Reports. 7: 6127. PMID 28733591 DOI: 10.1038/s41598-017-06417-3 |
0.42 |
|
2017 |
Ohmae S, Kunimatsu J, Tanaka M. Cerebellar roles in self-timing for sub- and supra-second intervals. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. PMID 28242799 DOI: 10.1523/Jneurosci.2221-16.2017 |
0.748 |
|
2017 |
Uematsu A, Ohmae S, Tanaka M. Facilitation of temporal prediction by electrical stimulation to the primate cerebellar nuclei. Neuroscience. PMID 28131620 DOI: 10.1016/J.Neuroscience.2017.01.023 |
0.459 |
|
2016 |
Suzuki TW, Kunimatsu J, Tanaka M. Correlation between Pupil Size and Subjective Passage of Time in Non-Human Primates. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 36: 11331-11337. PMID 27807173 DOI: 10.1523/Jneurosci.2533-16.2016 |
0.752 |
|
2016 |
Kunimatsu J, Tanaka M. Striatal dopamine modulates timing of self-initiated saccades. Neuroscience. PMID 27651148 DOI: 10.1016/J.Neuroscience.2016.09.006 |
0.733 |
|
2016 |
Kunimatsu J, Suzuki TW, Tanaka M. Implications of Lateral Cerebellum in Proactive Control of Saccades. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 36: 7066-74. PMID 27358462 DOI: 10.1523/Jneurosci.0733-16.2016 |
0.766 |
|
2016 |
Ohmae S, Tanaka M. Two different mechanisms for the detection of stimulus omission. Scientific Reports. 6: 20615. PMID 26847381 DOI: 10.1038/Srep20615 |
0.306 |
|
2015 |
Kunimatsu J, Miyamoto N, Ishikawa M, Shirato H, Tanaka M. Application of radiosurgical techniques to produce a primate model of brain lesions. Frontiers in Systems Neuroscience. 9: 67. PMID 25964746 DOI: 10.3389/Fnsys.2015.00067 |
0.682 |
|
2015 |
Yoshida A, Tanaka M. Two Types of Neurons in the Primate Globus Pallidus External Segment Play Distinct Roles in Antisaccade Generation. Cerebral Cortex (New York, N.Y. : 1991). PMID 25577577 DOI: 10.1093/cercor/bhu308 |
0.444 |
|
2014 |
Matsushima A, Tanaka M. Differential neuronal representation of spatial attention dependent on relative target locations during multiple object tracking. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 34: 9963-9. PMID 25057198 DOI: 10.1523/Jneurosci.4354-13.2014 |
0.578 |
|
2014 |
Matsushima A, Tanaka M. Different neuronal computations of spatial working memory for multiple locations within versus across visual hemifields. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 34: 5621-6. PMID 24741052 DOI: 10.1523/Jneurosci.0295-14.2014 |
0.587 |
|
2014 |
Matsushima A, Tanaka M. Manipulation of object choice by electrical microstimulation in macaque frontal eye fields. Cerebral Cortex (New York, N.Y. : 1991). 24: 1493-501. PMID 23349221 DOI: 10.1093/Cercor/Bht009 |
0.634 |
|
2013 |
Ohmae S, Uematsu A, Tanaka M. Temporally specific sensory signals for the detection of stimulus omission in the primate deep cerebellar nuclei. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 33: 15432-41. PMID 24068812 DOI: 10.1523/Jneurosci.1698-13.2013 |
0.423 |
|
2013 |
Tanaka M, Kunimatsu J, Ohmae S. [Neural representation of time]. Brain and Nerve = Shinkei Kenkyå« No Shinpo. 65: 941-8. PMID 23917496 |
0.67 |
|
2013 |
Matsushima A, Tanaka M. Retrospective and prospective information coding by different neurons in the prefrontal cortex. Neuroreport. 24: 73-8. PMID 23269282 DOI: 10.1097/Wnr.0B013E32835C8D66 |
0.624 |
|
2012 |
Kunimatsu J, Tanaka M. Alteration of the timing of self-initiated but not reactive saccades by electrical stimulation in the supplementary eye field. The European Journal of Neuroscience. 36: 3258-68. PMID 22845785 DOI: 10.1111/J.1460-9568.2012.08242.X |
0.772 |
|
2012 |
Matsushima A, Tanaka M. Neuronal correlates of multiple top-down signals during covert tracking of moving objects in macaque prefrontal cortex. Journal of Cognitive Neuroscience. 24: 2043-56. PMID 22721381 DOI: 10.1162/Jocn_A_00265 |
0.589 |
|
2011 |
Kunimatsu J, Tanaka M. [Functional analysis of the thalamocortical pathways in eye movements]. Brain and Nerve = Shinkei Kenkyå« No Shinpo. 63: 871-7. PMID 21817178 |
0.753 |
|
2011 |
Tanaka M, Kunimatsu J. Contribution of the central thalamus to the generation of volitional saccades. The European Journal of Neuroscience. 33: 2046-57. PMID 21645100 DOI: 10.1111/J.1460-9568.2011.07699.X |
0.761 |
|
2011 |
Matsushima A, Tanaka M. Manipulation of top-down signals for covert object tracking by electrical stimulation in the primate prefrontal cortex Neuroscience Research. 71: e92. DOI: 10.1016/J.Neures.2011.07.395 |
0.5 |
|
2010 |
Kunimatsu J, Tanaka M. Roles of the primate motor thalamus in the generation of antisaccades. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 30: 5108-17. PMID 20371831 DOI: 10.1523/Jneurosci.0406-10.2010 |
0.754 |
|
2009 |
Yoshida A, Tanaka M. Neuronal activity in the primate globus pallidus during smooth pursuit eye movements. Neuroreport. 20: 121-5. PMID 19151596 DOI: 10.1097/WNR.0b013e32831af055 |
0.497 |
|
2009 |
Yoshida A, Tanaka M. Enhanced modulation of neuronal activity during antisaccades in the primate globus pallidus Cerebral Cortex. 19: 206-217. PMID 18477689 DOI: 10.1093/cercor/bhn069 |
0.503 |
|
2009 |
Tanaka M, Ohmae S, Uematsu A. Entrainment of neuronal activity to periodic stimuli in the primate deep cerebellar nuclei Neuroscience Research. 65: S62. DOI: 10.1016/J.Neures.2009.09.179 |
0.368 |
|
2008 |
Kunimatsu J, Tanaka M. Involvement of the primate motor thalamus in the control of volitional eye movements Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 151: 448. DOI: 10.1016/J.Cbpb.2008.09.075 |
0.721 |
|
2007 |
Tanaka M. Cognitive signals in the primate motor thalamus predict saccade timing Journal of Neuroscience. 27: 12109-12118. PMID 17978052 DOI: 10.1523/JNEUROSCI.1873-07.2007 |
0.557 |
|
2007 |
Tanaka M. Spatiotemporal properties of eye position signals in the primate central thalamus Cerebral Cortex. 17: 1504-1515. PMID 16923780 DOI: 10.1093/cercor/bhl061 |
0.455 |
|
2007 |
Kunimatsu J, Tanaka M. Neural correlates of antisaccades in the primate motor thalamus Neuroscience Research. 58: S114. DOI: 10.1016/J.Neures.2007.06.1235 |
0.654 |
|
2006 |
Tanaka M. Inactivation of the central thalamus delays self-timed saccades Nature Neuroscience. 9: 20-22. PMID 16341209 DOI: 10.1038/nn1617 |
0.521 |
|
2005 |
Tanaka M. Effects of eye position on estimates of eye displacement for spatial updating Neuroreport. 16: 1261-1265. PMID 16056121 DOI: 10.1097/01.wnr.0000176518.04100.e7 |
0.493 |
|
2005 |
Tanaka M. Involvement of the central thalamus in the control of smooth pursuit eye movements Journal of Neuroscience. 25: 5866-5876. PMID 15976075 DOI: 10.1523/JNEUROSCI.0676-05.2005 |
0.543 |
|
2003 |
Tanaka M. Contribution of signals downstream from adaptation to saccade programming Journal of Neurophysiology. 90: 2080-2086. PMID 12966183 DOI: 10.1152/jn.00207.2003 |
0.446 |
|
2002 |
Tanaka M, Lisberger SG. Role of arcuate frontal cortex of monkeys in smooth pursuit eye movements. II. Relation to vector averaging pursuit. Journal of Neurophysiology. 87: 2700-14. PMID 12037172 DOI: 10.1152/Jn.2002.87.6.2700 |
0.667 |
|
2002 |
Tanaka M, Lisberger SG. Role of arcuate frontal cortex of monkeys in smooth pursuit eye movements. I. Basic response properties to retinal image motion and position. Journal of Neurophysiology. 87: 2684-99. PMID 12037171 DOI: 10.1152/Jn.2002.87.6.2684 |
0.692 |
|
2002 |
Tanaka M, Lisberger SG. Enhancement of multiple components of pursuit eye movement by microstimulation in the arcuate frontal pursuit area in monkeys. Journal of Neurophysiology. 87: 802-18. PMID 11826048 DOI: 10.1152/Jn.00409.2001 |
0.671 |
|
2001 |
Tanaka M, Lisberger SG. Regulation of the gain of visually guided smooth-pursuit eye movements by frontal cortex. Nature. 409: 191-4. PMID 11196642 DOI: 10.1038/35051582 |
0.673 |
|
2000 |
Tanaka M, Lisberger SG. Context-dependent smooth eye movements evoked by stationary visual stimuli in trained monkeys. Journal of Neurophysiology. 84: 1748-62. PMID 11024067 DOI: 10.1152/Jn.2000.84.4.1748 |
0.66 |
|
1998 |
Tanaka M, Yoshida T, Fukushima K. Latency of saccades during smooth-pursuit eye movement in man. Directional asymmetries. Experimental Brain Research. 121: 92-8. PMID 9698194 DOI: 10.1007/S002210050440 |
0.67 |
|
1998 |
Tanaka M, Fukushima K. Neuronal responses related to smooth pursuit eye movements in the periarcuate cortical area of monkeys. Journal of Neurophysiology. 80: 28-47. PMID 9658026 DOI: 10.1152/Jn.1998.80.1.28 |
0.687 |
|
1997 |
Tanaka M, Fukushima K. 1538 Analysis of slow eye movement evoked by a stationary visual stimulus Neuroscience Research. 28: S193. DOI: 10.1016/S0168-0102(97)90526-5 |
0.63 |
|
1996 |
Fukushima K, Chin S, Fukushima J, Tanaka M, Kurkin S. Further evidence for the specific involvement of the flocculus in the vertical vestibulo-ocular reflex (VOR). Progress in Brain Research. 112: 431-40. PMID 8979848 DOI: 10.1016/S0079-6123(08)63348-8 |
0.646 |
|
1996 |
Fukushima K, Tanaka M, Suzuki Y, Fukushima J, Yoshida T. Adaptive changes in human smooth pursuit eye movement. Neuroscience Research. 25: 391-8. PMID 8866520 DOI: 10.1016/0168-0102(96)01068-1 |
0.646 |
|
1996 |
Fukushima K, Chin S, Fukushima J, Tanaka M. Simple-spike activity of floccular Purkinje cells responding to sinusoidal vertical rotation and optokinetic stimuli in alert cats. Neuroscience Research. 24: 275-89. PMID 8815447 DOI: 10.1016/0168-0102(95)01002-5 |
0.638 |
|
1996 |
Tanaka M, Fukushima K. 1602 Discharge characteristics of pursuit cells in monkey frontal eye field Neuroscience Research. 25: S170. DOI: 10.1016/0168-0102(96)89036-5 |
0.588 |
|
Show low-probability matches. |