cached image

Anthony S. Maida - Publications

University of Louisiana at Lafayette, Lafayette, LA, United States 
Intelligent systems, neural networks, Cognitive Neuroscience

16 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2019 Tavanaei A, Ghodrati M, Kheradpisheh SR, Masquelier T, Maida A. Deep learning in spiking neural networks. Neural Networks : the Official Journal of the International Neural Network Society. 111: 47-63. PMID 30682710 DOI: 10.1016/J.Neunet.2018.12.002  0.336
2019 Tavanaei A, Maida AS. BP-STDP: Approximating backpropagation using spike timing dependent plasticity Neurocomputing. 330: 39-47. DOI: 10.1016/J.Neucom.2018.11.014  0.373
2018 Tavanaei A, Masquelier T, Maida A. Representation learning using event-based STDP. Neural Networks : the Official Journal of the International Neural Network Society. 105: 294-303. PMID 29894846 DOI: 10.1016/j.neunet.2018.05.018  0.357
2017 Tavanaei A, Maida AS. A spiking network that learns to extract spike signatures from speech signals Neurocomputing. 240: 191-199. DOI: 10.1016/j.neucom.2017.01.088  0.322
2016 Tavanaei A, Maida AS. Training a Hidden Markov Model with a Bayesian Spiking Neural Network Journal of Signal Processing Systems. 90: 211-220. DOI: 10.1007/s11265-016-1153-2  0.375
2012 Lemoine B, Maida A. GPU facilitated unsupervised visual feature acquisition Bmc Neuroscience. 13. DOI: 10.1186/1471-2202-13-S1-P87  0.345
2011 Vempala NN, Maida AS. Effects of memory size on melody recognition in a simulation of cohort theory Cognitive Systems Research. 12: 66-78. DOI: 10.1016/j.cogsys.2010.07.003  0.698
2009 Vempala NN, Maida AS. Modeling melody recognition using a sequence recognition neural network with meta-level processes Proceedings of the International Joint Conference On Neural Networks. 3204-3211. DOI: 10.1109/IJCNN.2009.5178610  0.698
2007 Moustafa AA, Maida AS. Using TD learning to simulate working memory performance in a model of the prefrontal cortex and basal ganglia Cognitive Systems Research. 8: 262-281. DOI: 10.1016/J.Cogsys.2007.02.001  0.537
2007 Lakhotia A, Golconda S, Maida A, Mejia P, Puntambeker A, Seetharaman G, Wilson S. CajunBot: Architecture and algorithms Springer Tracts in Advanced Robotics. 36: 245-280. DOI: 10.1007/978-3-540-73429-1_8  0.67
2006 Maida AS, Golconda S, Mejia P, Lakhotia A, Cavanaugh C. Subgoal-based local navigation and obstacle avoidance using a grid-distance field International Journal of Vehicle Autonomous Systems. 4: 122-142. DOI: 10.1504/Ijvas.2006.012203  0.667
2006 Rowland BA, Maida AS, Berkeley ISN. Synaptic noise as a means of implementing weight-perturbation learning Connection Science. 18: 69-79. DOI: 10.1080/09540090500386551  0.682
2006 Günay C, Maida AS. Using temporal binding for hierarchical recruitment of conjunctive concepts over delayed lines Neurocomputing. 69: 317-367. DOI: 10.1016/j.neucom.2005.03.008  0.608
2006 Lakhotia A, Golconda S, Maida A, Mejia P, Puntambeker A, Seetharaman G, Wilson S. Field report: CajunBot: Architecture and algorithms Journal of Field Robotics. 23: 555-578. DOI: 10.1002/Rob.20129  0.675
1991 Maida AS. Maintaining mental models of agents who have existential misconceptions Artificial Intelligence. 50: 331-383. DOI: 10.1016/0004-3702(91)90018-F  0.366
1989 Iwama K, Maida AS. Organizing and integrating edge segments for texture discrimination Journal of Experimental and Theoretical Artificial Intelligence. 1: 113-132. DOI: 10.1080/09528138908953696  0.328
Show low-probability matches.