Seungyong Jung, Ph.D. - Publications

Affiliations: 
2012 Electrical Engineering Stony Brook University, Stony Brook, NY, United States 
Area:
Optoelectronic device and systems; Semiconductor devices, physics and technology.

38 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2022 Kim JH, Oberhausen W, Jung S, Xu J, Mei J, Kirch JD, Mawst LJ, Botez D, Belkin MA. Terahertz difference-frequency-generation quantum cascade lasers on silicon with wire grid current injectors. Optics Express. 30: 25410-25417. PMID 36237072 DOI: 10.1364/OE.454780  0.379
2019 Jung S, Palaferri D, Zhang K, Xie F, Okuno Y, Pinzone C, Lascola K, Belkin MA. Homogeneous photonic integration of mid-infrared quantum cascade lasers with low-loss passive waveguides on an InP platform Optica. 6: 1023. DOI: 10.1364/OPTICA.6.001023  0.444
2018 Fujita K, Jung S, Jiang Y, Kim JH, Nakanishi A, Ito A, Hitaka M, Edamura T, Belkin MA. Recent progress in terahertz difference-frequency quantum cascade laser sources Nanophotonics. 7: 1795-1817. DOI: 10.1515/Nanoph-2018-0093  0.554
2018 Jiang A, Jung S, Jiang Y, Vijayraghavan K, Kim JH, Belkin MA. Mid-infrared quantum cascade laser arrays with electrical switching of emission frequencies Aip Advances. 8: 85021. DOI: 10.1063/1.5046782  0.56
2018 Kim JH, Jung S, Jiang Y, Fujita K, Hitaka M, Ito A, Edamura T, Belkin MA. Double-metal waveguide terahertz difference-frequency generation quantum cascade lasers with surface grating outcouplers Applied Physics Letters. 113: 161102. DOI: 10.1063/1.5043095  0.54
2017 Consolino L, Jung S, Campa A, De Regis M, Pal S, Kim JH, Fujita K, Ito A, Hitaka M, Bartalini S, De Natale P, Belkin MA, Vitiello MS. Spectral purity and tunability of terahertz quantum cascade laser sources based on intracavity difference-frequency generation. Science Advances. 3: e1603317. PMID 28879235 DOI: 10.1126/Sciadv.1603317  0.538
2017 Jung S, Jiang Y, Kim JH, Consolino L, Bartalini S, Natale PD, Vitello M, Fujita K, Hitaka M, Ito A, Kirch J, Botez D, Demmerle F, Boehm G, Amann M, et al. Narrow-linewidth ultra-broadband terahertz sources based on difference-frequency generation in mid-infrared quantum cascade lasers Proceedings of Spie. 10123: 1012315. DOI: 10.1117/12.2256099  0.569
2017 Jung S, Kim JH, Jiang Y, Vijayraghavan K, Belkin MA. Terahertz difference frequency generation in quantum cascade lasers on silicon Proceedings of Spie. 10123: 1012316. DOI: 10.1117/12.2252585  0.56
2017 Jung S, Kim JH, Jiang Y, Vijayraghavan K, Belkin MA. Broadly tunable terahertz difference-frequency generation in quantum cascade lasers on silicon Optical Engineering. 57: 1. DOI: 10.1117/1.Oe.57.1.011020  0.572
2017 Jung S, Kirch J, Kim JH, Mawst LJ, Botez D, Belkin MA. Quantum cascade lasers transfer-printed on silicon-on-sapphire Applied Physics Letters. 111: 211102. DOI: 10.1063/1.5002157  0.51
2016 Lu F, Lee J, Jiang A, Jung S, Belkin MA. Thermopile detector of light ellipticity. Nature Communications. 7: 12994. PMID 27703152 DOI: 10.1038/Ncomms12994  0.355
2016 Jiang Y, Vijayraghavan K, Jung S, Jiang A, Kim JH, Demmerle F, Boehm G, Amann MC, Belkin MA. Spectroscopic Study of Terahertz Generation in Mid-Infrared Quantum Cascade Lasers. Scientific Reports. 6: 21169. PMID 26879901 DOI: 10.1038/Srep21169  0.578
2016 Jung S, Kim JH, Jiang Y, Vijayraghavan K, Belkin MA. Terahertz difference-frequency quantum cascade laser sources on silicon Optica. 4: 38. DOI: 10.1364/OPTICA.4.000038  0.433
2015 Jiang A, Jung S, Jiang Y, Vijayraghavan K, Kim J, Belkin M. Broadly-tunable room-temperature monolithic terahertz quantum cascade laser sources Cleo: Science and Innovations, Cleo-Si 2015. 2267. DOI: 10.1364/CLEO_SI.2015.SM1H.3  0.464
2015 Troccoli M, Wang X, Fan J, Jung S, Jiang A, Jiang Y, Vijayraghavan K, Belkin MA. High power MWIR quantum cascade lasers and their use in intracavity THz room temperature generation Proceedings of Spie - the International Society For Optical Engineering. 9467. DOI: 10.1117/12.2178098  0.57
2015 Lee J, Nookala N, Tymchenko M, Jung S, Demmerle F, Boehm G, Amann MC, Alù A, Belkin MA. Nonlinear optics with quantum-engineered intersubband metamaterials Proceedings of Spie - the International Society For Optical Engineering. 9382. DOI: 10.1117/12.2084669  0.473
2015 Jung S, Jiang Y, Vijayraghavan K, Jiang A, Demmerle F, Boehm G, Wang X, Troccoli M, Amann MC, Belkin MA. Recent progress in widely tunable single-mode room temperature terahertz quantum cascade laser sources Ieee Journal On Selected Topics in Quantum Electronics. 21. DOI: 10.1109/Jstqe.2015.2428054  0.56
2015 Fujita K, Ito A, Hitaka M, Dougakiuchi T, Edamura T, Yamanishi M, Jung S, Belkin MA. Efficient terahertz-wave generation in mid-infrared quantum-cascade lasers with a common dual-upper-state active region Irmmw-Thz 2015 - 40th International Conference On Infrared, Millimeter, and Terahertz Waves. DOI: 10.1109/IRMMW-THz.2015.7327480  0.481
2015 Jiang A, Jung S, Jiang Y, Vijayraghavan K, Kim JH, Belkin MA. Widely tunable terahertz source based on intra-cavity frequency mixing in quantum cascade laser arrays Applied Physics Letters. 106. DOI: 10.1063/1.4923374  0.591
2015 Fujita K, Hitaka M, Ito A, Edamura T, Yamanishi M, Jung S, Belkin MA. Terahertz generation in mid-infrared quantum cascade lasers with a dual-upper-state active region Applied Physics Letters. 106. DOI: 10.1063/1.4923203  0.563
2014 Jung S, Jiang A, Jiang Y, Vijayraghavan K, Wang X, Troccoli M, Belkin MA. Broadly tunable monolithic room-temperature terahertz quantum cascade laser sources. Nature Communications. 5: 4267. PMID 25014053 DOI: 10.1038/Ncomms5267  0.556
2014 Jung S, Jiang A, Jiang Y, Vijayraghavan K, Wang X, Troccoli M, Demmerle F, Boehm G, Amann MC, Belkin MA. Broadly tunable room temperature monolithic terahertz quantum cascade laser sources Optical Sensors, 2014. DOI: 10.1364/Sensors.2014.Seth2D.4  0.553
2014 Vijayraghavan K, Jiang Y, Jung S, Belkin M. Compact and broadly tunable semiconductor terahertz radiation sources Spie Newsroom. DOI: 10.1117/2.1201409.005632  0.308
2014 Jung S, Jiang A, Jiang Y, Vijayraghavan K, Wang X, Troccoli M, Belkin MA. Monolithic tunable terahertz quantum cascade laser source based on difference frequency generation International Conference On Infrared, Millimeter, and Terahertz Waves, Irmmw-Thz. DOI: 10.1109/IRMMW-THz.2014.6956477  0.431
2014 Jiang Y, Vijayraghavan K, Jung S, Demmerle F, Boehm G, Amann MC, Belkin MA. Broadly tunable external cavity terahertz source from 1.2∼5.9 THz International Conference On Infrared, Millimeter, and Terahertz Waves, Irmmw-Thz. DOI: 10.1109/IRMMW-THz.2014.6956430  0.304
2014 Jiang Y, Vijayraghavan K, Jung S, Demmerle F, Boehm G, Amann MC, Belkin MA. External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2-5.9 THz tuning range Journal of Optics (United Kingdom). 16. DOI: 10.1088/2040-8978/16/9/094002  0.593
2014 Lee J, Jung S, Chen PY, Lu F, Demmerle F, Boehm G, Amann MC, Alù A, Belkin MA. Ultrafast Electrically Tunable Polaritonic Metasurfaces Advanced Optical Materials. 2: 1057-1063. DOI: 10.1002/Adom.201400185  0.433
2013 Belkin MA, Jiang Y, Vijayraghavan K, Jung S, Demmerle F, Boehm G, Amann MC. Broadly tunable room temperature terahertz quantum cascade laser sources Optics Infobase Conference Papers. DOI: 10.1364/Mics.2013.Mth4B.4  0.594
2013 Jung S, Suchalkin S, Kipshidze G, Westerfeld D, Belenky GL. Light-emitting diodes operating at 2 \mu{\rm m} with 10 mw optical power Ieee Photonics Technology Letters. 25: 2278-2280. DOI: 10.1109/Lpt.2013.2285153  0.737
2013 Suchalkin S, Belenky G, Hosoda T, Jung S, Belkin MA. Distributed feedback quantum cascade laser with optically tunable emission frequency Applied Physics Letters. 103. DOI: 10.1063/1.4816592  0.736
2013 Suchalkin S, Jung S, Tober R, Belkin MA, Belenky G. Optically tunable long wavelength infrared quantum cascade laser operated at room temperature Applied Physics Letters. 102. DOI: 10.1063/1.4774267  0.685
2012 Jung S, Liang R, Kipshidze G, Suchalkin S, Shterengas L, Belenky G. Single spatial mode 2-2.2 μm diode lasers fabricated by selective wet etching Semiconductor Science and Technology. 27. DOI: 10.1088/0268-1242/27/8/085004  0.72
2012 Wang D, Donetsky D, Jung S, Belenky G. Carrier lifetime measurements in long-wave infrared InAs/GaSb superlattices under low excitation conditions Journal of Electronic Materials. 41: 3027-3030. DOI: 10.1007/S11664-012-2216-1  0.579
2012 Jung S, Kipshidze G, Liang R, Suchalkin S, Shterengas L, Belenky G. GaSb-based mid-infrared single lateral mode lasers fabricated by selective wet etching technique with an etch stop layer Journal of Electronic Materials. 41: 899-904. DOI: 10.1007/S11664-012-1956-2  0.703
2011 Jung S, Suchalkin S, Westerfeld D, Kipshidze G, Golden E, Snyder D, Belenky G. High dimensional addressable LED arrays based on type i GaInAsSb quantum wells with quinternary AlGaInAsSb barriers Semiconductor Science and Technology. 26. DOI: 10.1088/0268-1242/26/8/085022  0.756
2010 Jung S, Suchalkin S, Kipshidze G, Westerfeld D, Golden E, Snyder D, Belenky G. Dual wavelength GaSb based type i quantum well mid-infrared light emitting diodes Applied Physics Letters. 96. DOI: 10.1063/1.3425899  0.775
2009 Jung S, Suchalkin S, Kipshidze G, Westerfeld D, Snyder D, Johnson M, Belenky G. GaSb-based type i quantum-well light-emitting diode addressable array operated at wavelengths up to 3.66 μ m Ieee Photonics Technology Letters. 21: 1087-1089. DOI: 10.1109/Lpt.2009.2022843  0.771
2008 Suchalkin S, Jung S, Kipshidze G, Shterengas L, Hosoda T, Westerfeld D, Snyder D, Belenky G. GaSb based light emitting diodes with strained InGaAsSb type i quantum well active regions Applied Physics Letters. 93. DOI: 10.1063/1.2974795  0.725
Show low-probability matches.