Year |
Citation |
Score |
2018 |
Yoshida M, Nagayama T, Newland P. Nitric oxide-mediated intersegmental modulation of cycle frequency in the crayfish swimmeret system. Biology Open. PMID 29716944 DOI: 10.1242/Bio.032789 |
0.469 |
|
2017 |
Santos FP, Maciel CD, Newland PL. Pre-processing and transfer entropy measures in motor neurons controlling limb movements. Journal of Computational Neuroscience. PMID 28791522 DOI: 10.1007/s10827-017-0656-6 |
0.359 |
|
2015 |
Costalago Meruelo A, Simpson DM, Veres SM, Newland PL. Improved system identification using artificial neural networks and analysis of individual differences in responses of an identified neuron. Neural Networks : the Official Journal of the International Neural Network Society. 75: 56-65. PMID 26717237 DOI: 10.1016/j.neunet.2015.12.002 |
0.302 |
|
2015 |
Endo W, Santos FP, Simpson D, Maciel CD, Newland PL. Delayed mutual information infers patterns of synaptic connectivity in a proprioceptive neural network. Journal of Computational Neuroscience. 38: 427-38. PMID 25643986 DOI: 10.1007/s10827-015-0548-6 |
0.304 |
|
2012 |
Angarita-Jaimes N, Dewhirst OP, Simpson DM, Kondoh Y, Allen R, Newland PL. The dynamics of analogue signalling in local networks controlling limb movement. The European Journal of Neuroscience. 36: 3269-82. PMID 22882251 DOI: 10.1111/j.1460-9568.2012.08236.x |
0.352 |
|
2011 |
Nagayama T, Newland PL. Temperature dependent plasticity of habituation in the crayfish. Journal of Comparative Physiology. a, Neuroethology, Sensory, Neural, and Behavioral Physiology. 197: 1073-81. PMID 21789652 DOI: 10.1007/S00359-011-0668-Z |
0.418 |
|
2011 |
Schuppe H, Newland PL. Differential effects of nitric oxide on the responsiveness of tactile hairs. Invertebrate Neuroscience : In. 11: 85-90. PMID 21573755 DOI: 10.1007/s10158-011-0119-0 |
0.301 |
|
2010 |
Vidal-Gadea AG, Jing XJ, Simpson D, Dewhirst OP, Kondoh Y, Allen R, Newland PL. Coding characteristics of spiking local interneurons during imposed limb movements in the locust. Journal of Neurophysiology. 103: 603-15. PMID 19955290 DOI: 10.1152/jn.00510.2009 |
0.669 |
|
2008 |
Newland PL, Hunt E, Sharkh SM, Hama N, Takahata M, Jackson CW. Static electric field detection and behavioural avoidance in cockroaches. The Journal of Experimental Biology. 211: 3682-90. PMID 19011207 DOI: 10.1242/jeb.019901 |
0.421 |
|
2007 |
Schuppe H, Cuttle M, Newland PL. Nitric oxide modulates sodium taste via a cGMP-independent pathway. Developmental Neurobiology. 67: 219-32. PMID 17443784 DOI: 10.1002/dneu.20343 |
0.304 |
|
2007 |
Ott SR, Aonuma H, Newland PL, Elphick MR. Nitric oxide synthase in crayfish walking leg ganglia: segmental differences in chemo-tactile centers argue against a generic role in sensory integration. The Journal of Comparative Neurology. 501: 381-99. PMID 17245703 DOI: 10.1002/cne.21242 |
0.602 |
|
2004 |
Araki M, Schuppe H, Fujimoto S, Nagayama T, Newland PL. Nitric oxide modulates local reflexes of the tailfan of the crayfish. Journal of Neurobiology. 60: 176-86. PMID 15266649 DOI: 10.1002/Neu.20007 |
0.503 |
|
2004 |
Nagayama T, Kimura K, Araki M, Aonuma H, Newland PL. Distribution of glutamatergic immunoreactive neurons in the terminal abdominal ganglion of the crayfish. The Journal of Comparative Neurology. 474: 123-35. PMID 15156582 DOI: 10.1002/Cne.20124 |
0.477 |
|
2004 |
Schuppe H, Newland PL. Nitric oxide modulates presynaptic afferent depolarization of mechanosensory neurons. Journal of Neurobiology. 59: 331-42. PMID 15146549 DOI: 10.1002/neu.10333 |
0.364 |
|
2004 |
Schuppe H, Araki M, Aonuma H, Nagayama T, Newland PL. Effects of nitric oxide on proprioceptive signaling. Zoological Science. 21: 1-5. PMID 14745097 DOI: 10.2108/0289-0003(2004)21[1:Eonoop]2.0.Co;2 |
0.473 |
|
2002 |
Nagayama T, Araki M, Newland PL. Lateral giant fibre activation of exopodite motor neurones in the crayfish tailfan. Journal of Comparative Physiology. a, Neuroethology, Sensory, Neural, and Behavioral Physiology. 188: 621-30. PMID 12355238 DOI: 10.1007/S00359-002-0337-3 |
0.483 |
|
2002 |
Rogers SM, Newland PL. Gustatory processing in thoracic local circuits of locusts. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 22: 8324-33. PMID 12223587 |
0.344 |
|
2002 |
Aonuma H, Newland PL. Synaptic inputs onto spiking local interneurons in crayfish are depressed by nitric oxide. Journal of Neurobiology. 52: 144-55. PMID 12124752 DOI: 10.1002/neu.10081 |
0.348 |
|
2001 |
Schuppe H, Aonuma H, Newland PL. Distribution of NADPH-diaphorase-positive ascending interneurones in the crayfish terminal abdominal ganglion. Cell and Tissue Research. 305: 135-46. PMID 11512666 DOI: 10.1007/s004410100406 |
0.351 |
|
2001 |
Schuppe H, Aonuma H, Newland PL. NADPH-diaphorase histochemistry in the terminal abdominal ganglion of the crayfish. Cell and Tissue Research. 303: 289-99. PMID 11291775 DOI: 10.1007/s004410000319 |
0.302 |
|
2001 |
Aonuma H, Newland PL. Opposing actions of nitric oxide on synaptic inputs of identified interneurones in the central nervous system of the crayfish. The Journal of Experimental Biology. 204: 1319-32. PMID 11249841 |
0.333 |
|
2000 |
Newland PL, Rogers SM, Gaaboub I, Matheson T. Parallel somatotopic maps of gustatory and mechanosensory neurons in the central nervous system of an insect. The Journal of Comparative Neurology. 425: 82-96. PMID 10940944 DOI: 10.1002/1096-9861(20000911)425:1<82::Aid-Cne8>3.0.Co;2-5 |
0.306 |
|
2000 |
Newland PL, Aonuma H, Nagayama T. The role of proprioceptive signals in the crayfish escape circuit Zoological Science. 17: 1185-1195. DOI: 10.2108/Zsj.17.1185 |
0.559 |
|
1999 |
Newland PL. Processing of gustatory information by spiking local interneurons in the locust. Journal of Neurophysiology. 82: 3149-59. PMID 10601448 |
0.405 |
|
1999 |
Aonuma H, Newland PL, Nagayama T. Processing of proprioceptive signals by ascending interneurones in the terminal abdominal ganglion of the crayfish. The Journal of Experimental Biology. 202: 2975-2984. PMID 10518478 |
0.568 |
|
1997 |
Burrows M, Newland PL. Processing of tactile information in neuronal networks controlling leg movements of the Locust. Journal of Insect Physiology. 43: 107-123. PMID 12769915 DOI: 10.1016/S0022-1910(96)00081-9 |
0.496 |
|
1997 |
Newland PL, Kondoh Y. Dynamics of neurons controlling movements of a locust hind leg. III. Extensor tibiae motor neurons. Journal of Neurophysiology. 77: 3297-310. PMID 9212276 |
0.382 |
|
1997 |
Nagayama T, Aonuma H, Newland PL. Convergent chemical and electrical synaptic inputs from proprioceptive afferents onto an identified intersegmental interneuron in the crayfish. Journal of Neurophysiology. 77: 2826-30. PMID 9163396 DOI: 10.1152/Jn.1997.77.5.2826 |
0.525 |
|
1997 |
Newland PL, Kondoh Y. Dynamics of neurons controlling movements of a locust hind leg II. Flexor tibiae motor neurons. Journal of Neurophysiology. 77: 1731-46. PMID 9114232 |
0.329 |
|
1997 |
Newland PL, Aonuma H, Nagayama T. Monosynaptic excitation of lateral giant fibres by proprioceptive afferents in the crayfish Journal of Comparative Physiology - a Sensory, Neural, and Behavioral Physiology. 181: 103-109. DOI: 10.1007/S003590050097 |
0.582 |
|
1996 |
Newland PL, Aonuma H, Sato M, Nagayama T. Presynaptic inhibition of exteroceptive afferents by proprioceptive afferents in the terminal abdominal ganglion of the crayfish. Journal of Neurophysiology. 76: 1047-58. PMID 8871219 DOI: 10.1152/Jn.1996.76.2.1047 |
0.563 |
|
1996 |
Newland PL, Emptage NJ. The central connections and actions during walking of tibial campaniform sensilla in the locust. Journal of Comparative Physiology. a, Sensory, Neural, and Behavioral Physiology. 178: 749-62. PMID 8667289 |
0.349 |
|
1995 |
Parker D, Newland PL. Cholinergic synaptic transmission between proprioceptive afferents and a hind leg motor neuron in the locust. Journal of Neurophysiology. 73: 586-94. PMID 7760120 |
0.349 |
|
1995 |
Kondoh Y, Okuma J, Newland PL. Dynamics of neurons controlling movements of a locust hind leg: Wiener kernel analysis of the responses of proprioceptive afferents. Journal of Neurophysiology. 73: 1829-42. PMID 7623084 |
0.309 |
|
1995 |
Newland PL, Watkins B, Emptage NJ, Nagayama T. The structure, response properties and development of a hair plate on the mesothoracic leg of the locust. The Journal of Experimental Biology. 198: 2397-404. PMID 7490573 |
0.46 |
|
1994 |
Newland PL, Burrows M. Processing of mechanosensory information from gustatory receptors on a hind leg of the locust. Journal of Comparative Physiology. a, Sensory, Neural, and Behavioral Physiology. 174: 399-410. PMID 8182559 DOI: 10.1007/BF00191706 |
0.55 |
|
1994 |
Burrows M, Newland PL. Convergence of mechanosensory afferents from different classes of exteroceptors onto spiking local interneurons in the locust. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 14: 3341-50. PMID 8182477 DOI: 10.1523/Jneurosci.14-05-03341.1994 |
0.517 |
|
1993 |
Burrows M, Newland PL. Correlation between the receptive fields of locust interneurons, their dendritic morphology, and the central projections of mechanosensory neurons. The Journal of Comparative Neurology. 329: 412-26. PMID 8459052 DOI: 10.1002/cne.903290311 |
0.514 |
|
1993 |
Nagayama T, Newland PL. A sensory map based on velocity threshold of sensory neurones from a chordotonal organ in the tailfan of the crayfish. Journal of Comparative Physiology. a, Sensory, Neural, and Behavioral Physiology. 172: 7-15. PMID 8445581 DOI: 10.1007/Bf00214711 |
0.538 |
|
1993 |
Newland PL, Nagayama T. Parallel processing of proprioceptive information in the terminal abdominal ganglion of the crayfish. Journal of Comparative Physiology. a, Sensory, Neural, and Behavioral Physiology. 172: 389-400. PMID 8315605 DOI: 10.1007/Bf00213521 |
0.593 |
|
1990 |
Newland PL. Morphology of a population of mechanosensory ascending interneurones in the metathoracic ganglion of the locust. The Journal of Comparative Neurology. 299: 242-60. PMID 2229480 DOI: 10.1002/cne.902990208 |
0.329 |
|
1990 |
Field LH, Newland PL, Hisada M. Physiology and structure of three new uropod proprioceptors in the crayfish Procambarus Clarkii Journal of Experimental Biology. 154: 179-200. |
0.408 |
|
Show low-probability matches. |