Year |
Citation |
Score |
2009 |
Shimizu S, Hoyer PO, Hyvärinen A. Estimation of linear non-Gaussian acyclic models for latent factors Neurocomputing. 72: 2024-2027. DOI: 10.1016/j.neucom.2008.11.018 |
0.383 |
|
2007 |
Asunción Vicente M, Hoyer PO, Hyvärinen A. Equivalence of some common linear feature extraction techniques for appearance-based object recognition tasks. Ieee Transactions On Pattern Analysis and Machine Intelligence. 29: 896-900. PMID 17356208 DOI: 10.1109/TPAMI.2007.1074 |
0.426 |
|
2006 |
Shimizu S, Hyvärinen A, Hoyer PO, Kano Y. Finding a causal ordering via independent component analysis Computational Statistics and Data Analysis. 50: 3278-3293. DOI: 10.1016/j.csda.2005.05.004 |
0.426 |
|
2006 |
Hoyer PO, Shimizu S, Hyvärinen A, Kano Y, Kerminen AJ. New permutation algorithms for causal discovery using ICA Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 3889: 115-122. DOI: 10.1007/11679363_15 |
0.338 |
|
2006 |
Shimizu S, Hyvärinen A, Kano Y, Hoyer PO, Kerminen AJ. Testing significance of mixing and demixing coefficients in ICA Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 3889: 901-908. DOI: 10.1007/11679363_112 |
0.355 |
|
2005 |
Hyvärinen A, Gutmann M, Hoyer PO. Statistical model of natural stimuli predicts edge-like pooling of spatial frequency channels in V2. Bmc Neuroscience. 6: 12. PMID 15715907 DOI: 10.1186/1471-2202-6-12 |
0.504 |
|
2002 |
Hoyer PO, Hyvärinen A. A multi-layer sparse coding network learns contour coding from natural images. Vision Research. 42: 1593-605. PMID 12074953 DOI: 10.1016/S0042-6989(02)00017-2 |
0.5 |
|
2002 |
Hoyer PO, Hyvärinen A. Sparse coding natural contours Neurocomputing. 44: 459-466. DOI: 10.1016/S0925-2312(02)00400-9 |
0.418 |
|
2001 |
Hyvärinen A, Hoyer PO. A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images. Vision Research. 41: 2413-23. PMID 11459597 DOI: 10.1016/S0042-6989(01)00114-6 |
0.488 |
|
2001 |
Hyvärinen A, Hoyer PO, Inki M. Topographic independent component analysis. Neural Computation. 13: 1527-58. PMID 11440596 DOI: 10.1162/089976601750264992 |
0.458 |
|
2001 |
Hyvärinen A, Hoyer PO. Topographic independent component analysis as a model of V1 organization and receptive fields Neurocomputing. 38: 1307-1315. DOI: 10.1016/S0925-2312(01)00490-8 |
0.438 |
|
2000 |
Hyvärinen A, Hoyer P. Emergence of phase- and shift-invariant features by decomposition of natural images into independent feature subspaces. Neural Computation. 12: 1705-20. PMID 10935923 DOI: 10.1162/089976600300015312 |
0.535 |
|
2000 |
Hoyer PO, Hyvärinen A. Independent component analysis applied to feature extraction from colour and stereo images Network: Computation in Neural Systems. 11: 191-210. DOI: 10.1088/0954-898X_11_3_302 |
0.485 |
|
2000 |
Hyvärinen A, Hoyer PO, Inki M. Topographic ICA as a model of natural image statistics Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 1811: 535-544. DOI: 10.1007/3-540-45482-9_54 |
0.543 |
|
1999 |
Oja E, Hyvärinen A, Hoyer P. Image Feature Extraction and Denoising by Sparse Coding Pattern Analysis & Applications. 2: 104-110. DOI: 10.1007/s100440050021 |
0.546 |
|
Show low-probability matches. |