Patrik Hoyer - Publications

Affiliations: 
Helsinki Institute for Information Technology, Espoo, Finland 
Area:
Computation & Theory

15 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2009 Shimizu S, Hoyer PO, Hyvärinen A. Estimation of linear non-Gaussian acyclic models for latent factors Neurocomputing. 72: 2024-2027. DOI: 10.1016/j.neucom.2008.11.018  0.383
2007 Asunción Vicente M, Hoyer PO, Hyvärinen A. Equivalence of some common linear feature extraction techniques for appearance-based object recognition tasks. Ieee Transactions On Pattern Analysis and Machine Intelligence. 29: 896-900. PMID 17356208 DOI: 10.1109/TPAMI.2007.1074  0.426
2006 Shimizu S, Hyvärinen A, Hoyer PO, Kano Y. Finding a causal ordering via independent component analysis Computational Statistics and Data Analysis. 50: 3278-3293. DOI: 10.1016/j.csda.2005.05.004  0.426
2006 Hoyer PO, Shimizu S, Hyvärinen A, Kano Y, Kerminen AJ. New permutation algorithms for causal discovery using ICA Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 3889: 115-122. DOI: 10.1007/11679363_15  0.338
2006 Shimizu S, Hyvärinen A, Kano Y, Hoyer PO, Kerminen AJ. Testing significance of mixing and demixing coefficients in ICA Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 3889: 901-908. DOI: 10.1007/11679363_112  0.355
2005 Hyvärinen A, Gutmann M, Hoyer PO. Statistical model of natural stimuli predicts edge-like pooling of spatial frequency channels in V2. Bmc Neuroscience. 6: 12. PMID 15715907 DOI: 10.1186/1471-2202-6-12  0.504
2002 Hoyer PO, Hyvärinen A. A multi-layer sparse coding network learns contour coding from natural images. Vision Research. 42: 1593-605. PMID 12074953 DOI: 10.1016/S0042-6989(02)00017-2  0.5
2002 Hoyer PO, Hyvärinen A. Sparse coding natural contours Neurocomputing. 44: 459-466. DOI: 10.1016/S0925-2312(02)00400-9  0.418
2001 Hyvärinen A, Hoyer PO. A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images. Vision Research. 41: 2413-23. PMID 11459597 DOI: 10.1016/S0042-6989(01)00114-6  0.488
2001 Hyvärinen A, Hoyer PO, Inki M. Topographic independent component analysis. Neural Computation. 13: 1527-58. PMID 11440596 DOI: 10.1162/089976601750264992  0.458
2001 Hyvärinen A, Hoyer PO. Topographic independent component analysis as a model of V1 organization and receptive fields Neurocomputing. 38: 1307-1315. DOI: 10.1016/S0925-2312(01)00490-8  0.438
2000 Hyvärinen A, Hoyer P. Emergence of phase- and shift-invariant features by decomposition of natural images into independent feature subspaces. Neural Computation. 12: 1705-20. PMID 10935923 DOI: 10.1162/089976600300015312  0.535
2000 Hoyer PO, Hyvärinen A. Independent component analysis applied to feature extraction from colour and stereo images Network: Computation in Neural Systems. 11: 191-210. DOI: 10.1088/0954-898X_11_3_302  0.485
2000 Hyvärinen A, Hoyer PO, Inki M. Topographic ICA as a model of natural image statistics Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 1811: 535-544. DOI: 10.1007/3-540-45482-9_54  0.543
1999 Oja E, Hyvärinen A, Hoyer P. Image Feature Extraction and Denoising by Sparse Coding Pattern Analysis & Applications. 2: 104-110. DOI: 10.1007/s100440050021  0.546
Show low-probability matches.