Year |
Citation |
Score |
2024 |
Sheliga BM, FitzGibbon EJ, Quaia C, Krauzlis RJ. Ocular-following responses to broadband visual stimuli of varying motion coherence. Journal of Vision. 24: 4. PMID 39630464 DOI: 10.1167/jov.24.13.4 |
0.446 |
|
2024 |
Sheliga BM, FitzGibbon EJ. Weighted power summation and contrast normalization mechanisms account for short-latency eye movements to motion and disparity of sine-wave gratings and broadband visual stimuli in humans. Journal of Vision. 24: 14. PMID 39186301 DOI: 10.1167/jov.24.8.14 |
0.472 |
|
2023 |
Sheliga BM, FitzGibbon EJ. Manipulating the Fourier spectra of stimuli comprising a two-frame kinematogram to study early visual motion-detecting mechanisms: Perception versus short latency ocular-following responses. Journal of Vision. 23: 11. PMID 37725387 DOI: 10.1167/jov.23.10.11 |
0.426 |
|
2022 |
Sheliga BM, Quaia C, FitzGibbon EJ, Cumming BG. Weighted summation and contrast normalization account for short-latency disparity vergence responses to white noise stimuli in humans. Journal of Vision. 22: 17. PMID 36413359 DOI: 10.1167/jov.22.12.17 |
0.356 |
|
2021 |
Sheliga BM, Quaia C, FitzGibbon EJ, Cumming BG. Short-latency ocular following responses to motion stimuli are strongly affected by temporal modulations of the visual content during the initial fixation period. Journal of Vision. 21: 8. PMID 33970195 DOI: 10.1167/jov.21.5.8 |
0.473 |
|
2020 |
Sheliga BM, Quaia C, FitzGibbon EJ, Cumming BG. Short-latency ocular-following responses: Weighted nonlinear summation predicts the outcome of a competition between two sine wave gratings moving in opposite directions. Journal of Vision. 20: 1. PMID 31995136 DOI: 10.1167/Jov.20.1.1 |
0.457 |
|
2018 |
Sheliga B, Quaia C, FitzGibbon E, Cumming B. Short-latency ocular-following responses to motion stimuli are strongly affected by temporal modulations of the visual content during the initial fixation period. Journal of Vision. 18: 351. DOI: 10.1167/18.10.351 |
0.501 |
|
2017 |
Sheliga BM, Quaia C, FitzGibbon EJ, Cumming BG. Human short-latency ocular vergence responses produced by interocular velocity differences. Journal of Vision. 16: 11. PMID 27548089 DOI: 10.1167/16.10.11 |
0.576 |
|
2016 |
Sheliga BM, Quaia C, FitzGibbon EJ, Cumming BG. Ocular-following responses to white noise stimuli in humans reveal a novel nonlinearity that results from temporal sampling. Journal of Vision. 16: 8. PMID 26762277 DOI: 10.1167/16.1.8 |
0.4 |
|
2016 |
Sheliga B, Quaia C, FitzGibbon E, Cumming B. Human short-latency ocular vergence responses in the absence of the binocular disparity signal. Journal of Vision. 16: 426. DOI: 10.1167/16.12.426 |
0.395 |
|
2015 |
Sheliga B, Quaia C, FitzGibbon E, Cumming B. Human contrast normalization process operates on a local scale. Journal of Vision. 15: 287. PMID 26325975 DOI: 10.1167/15.12.287 |
0.426 |
|
2015 |
Sheliga BM, Quaia C, FitzGibbon EJ, Cumming BG. Anisotropy in spatial summation properties of human Ocular-Following Response (OFR). Vision Research. 109: 11-9. PMID 25743079 DOI: 10.1016/J.Visres.2015.02.015 |
0.498 |
|
2014 |
Quaia C, Sheliga B, Optican L, Cumming B. Temporal processing of first, second, and third order disparities by the human visual system Journal of Vision. 14: 974-974. DOI: 10.1167/14.10.974 |
0.343 |
|
2014 |
Sheliga B, Quaia C, FitzGibbon E, Cumming B. Speed tuning of human Ocular Following Responses (OFRs) depends on orientation bandwidth in noise stimuli. Journal of Vision. 14: 477-477. DOI: 10.1167/14.10.477 |
0.368 |
|
2013 |
Sheliga BM, Quaia C, FitzGibbon EJ, Cumming BG. Retinal visual processing constrains human ocular following response. Vision Research. 93: 29-42. PMID 24125703 DOI: 10.1016/J.Visres.2013.10.002 |
0.506 |
|
2013 |
Quaia C, Sheliga BM, Optican LM, Cumming BG. Temporal evolution of pattern disparity processing in humans. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 33: 3465-76. PMID 23426674 DOI: 10.1523/Jneurosci.4318-12.2013 |
0.476 |
|
2013 |
Quaia C, Sheliga B, Optican L, Cumming B. Noise plaids reveal differences between motion and disparity computations Journal of Vision. 13: 963-963. DOI: 10.1167/13.9.963 |
0.335 |
|
2012 |
Sheliga BM, Quaia C, Cumming BG, Fitzgibbon EJ. Spatial summation properties of the human ocular following response (OFR): dependence upon the spatial frequency of the stimulus. Vision Research. 68: 1-13. PMID 22819728 DOI: 10.1167/11.11.526 |
0.565 |
|
2012 |
Quaia C, Sheliga BM, Fitzgibbon EJ, Optican LM. Ocular following in humans: spatial properties. Journal of Vision. 12. PMID 22523400 DOI: 10.1167/12.4.13 |
0.526 |
|
2012 |
Quaia C, Sheliga B, Optican L, Cumming B. Processing of first and second order binocular disparity by the human visual system Journal of Vision. 12: 39-39. DOI: 10.1167/12.9.39 |
0.35 |
|
2010 |
Rambold HA, Sheliga BM, Miles FA. Evidence from vergence eye movements that disparities defined by luminance and contrast are sensed by independent mechanisms. Journal of Vision. 10. PMID 21191131 DOI: 10.1167/10.14.31 |
0.671 |
|
2010 |
Sheliga B, FitzGibbon E, Miles F. Short-latency torsional ocular following in humans Journal of Vision. 9: 394-394. DOI: 10.1167/9.8.394 |
0.592 |
|
2010 |
Sheliga BM, FitzGibbon EJ, Miles FA. Local and global inhibitory influences associated with large-field stimuli Journal of Vision. 8: 1025-1025. DOI: 10.1167/8.6.1025 |
0.577 |
|
2010 |
Sheliga BM, FitzGibbon EJ, Miles FA. The initial ocular following responses (OFRs) to competing visual motions: Contrast-dependent nonlinear interactions and their dependence on spatial frequency and speed Journal of Vision. 6: 80-80. DOI: 10.1167/6.6.80 |
0.683 |
|
2010 |
Kodaka Y, Sheliga BM, FitzGibbon EJ, Miles FA. Radial-flow vergence eye movements depend critically on the local fourier components of the motion stimulus Journal of Vision. 5: 588-588. DOI: 10.1167/5.8.588 |
0.691 |
|
2010 |
Sheliga BM, FitzGibbon EJ, Miles FA. Evidence that disparities defined by luminance and contrast are sensed by independent mechanisms Journal of Vision. 10: 326-326. DOI: 10.1167/10.7.326 |
0.603 |
|
2010 |
Miles FA, Sheliga BM. Motion detection for reflexive tracking Dynamics of Visual Motion Processing: Neuronal, Behavioral, and Computational Approaches. 141-160. DOI: 10.1007/978-1-4419-0781-3_7 |
0.608 |
|
2009 |
Sheliga BM, Fitzgibbon EJ, Miles FA. The initial torsional Ocular Following Response (tOFR) in humans: a response to the total motion energy in the stimulus? Journal of Vision. 9: 2.1-38. PMID 20053093 DOI: 10.1167/9.12.2 |
0.7 |
|
2008 |
Sheliga BM, FitzGibbon EJ, Miles FA. Human ocular following: evidence that responses to large-field stimuli are limited by local and global inhibitory influences. Progress in Brain Research. 171: 237-43. PMID 18718307 DOI: 10.1016/S0079-6123(08)00633-X |
0.737 |
|
2008 |
Sheliga BM, Fitzgibbon EJ, Miles FA. Spatial summation properties of the human ocular following response (OFR): evidence for nonlinearities due to local and global inhibitory interactions. Vision Research. 48: 1758-76. PMID 18603279 DOI: 10.1016/J.Visres.2008.05.017 |
0.727 |
|
2007 |
Kodaka Y, Sheliga BM, FitzGibbon EJ, Miles FA. The vergence eye movements induced by radial optic flow: some fundamental properties of the underlying local-motion detectors. Vision Research. 47: 2637-60. PMID 17706738 DOI: 10.1016/J.Visres.2007.06.013 |
0.722 |
|
2007 |
Sheliga BM, FitzGibbon EJ, Miles FA. Human vergence eye movements initiated by competing disparities: evidence for a winner-take-all mechanism. Vision Research. 47: 479-500. PMID 17118422 DOI: 10.1016/J.Visres.2006.09.027 |
0.682 |
|
2006 |
Sheliga BM, FitzGibbon EJ, Miles FA. Short-latency disparity vergence eye movements: a response to disparity energy. Vision Research. 46: 3723-40. PMID 16765403 DOI: 10.1016/J.Visres.2006.04.020 |
0.733 |
|
2006 |
Rucker JC, Sheliga BM, Fitzgibbon EJ, Miles FA, Leigh RJ. Contrast sensitivity, first-order motion and Initial ocular following in demyelinating optic neuropathy. Journal of Neurology. 253: 1203-9. PMID 16649097 DOI: 10.1007/S00415-006-0200-5 |
0.717 |
|
2006 |
Sheliga BM, Kodaka Y, FitzGibbon EJ, Miles FA. Human ocular following initiated by competing image motions: evidence for a winner-take-all mechanism. Vision Research. 46: 2041-60. PMID 16487988 DOI: 10.1016/J.Visres.2005.11.033 |
0.707 |
|
2006 |
Sheliga BM, Chen KJ, FitzGibbon EJ, Miles FA. The initial ocular following responses elicited by apparent-motion stimuli: reversal by inter-stimulus intervals. Vision Research. 46: 979-92. PMID 16242168 DOI: 10.1016/J.Visres.2005.09.001 |
0.697 |
|
2005 |
Sheliga BM, Chen KJ, Fitzgibbon EJ, Miles FA. Initial ocular following in humans: a response to first-order motion energy. Vision Research. 45: 3307-21. PMID 15894346 DOI: 10.1016/J.Visres.2005.03.011 |
0.698 |
|
2005 |
Chen KJ, Sheliga BM, Fitzgibbon EJ, Miles FA. Initial ocular following in humans depends critically on the fourier components of the motion stimulus. Annals of the New York Academy of Sciences. 1039: 260-71. PMID 15826980 DOI: 10.1196/Annals.1325.025 |
0.714 |
|
2005 |
Sheliga BM, Chen KJ, Fitzgibbon EJ, Miles FA. Short-latency disparity vergence in humans: evidence for early spatial filtering. Annals of the New York Academy of Sciences. 1039: 252-9. PMID 15826979 DOI: 10.1196/Annals.1325.024 |
0.691 |
|
2005 |
Miles FA, Sheliga BM, FitzGibbon EJ. The initial ocular following response (OFR) to moving grating patterns: Evidence for winner-take-all mechanisms Journal of Vision. 5: 846-846. DOI: 10.1167/5.8.846 |
0.651 |
|
2005 |
Sheliga BM, FitzGibbon EJ, Kodaka Y, Miles FA. Vertical disparity vergence eye movements: Evidence for spatial filtering of the monocular visual inputs prior to binocular matching Journal of Vision. 5: 802-802. DOI: 10.1167/5.8.802 |
0.68 |
|
2004 |
Sheliga BM, Chen KJ, FitzGibbon EJ, Miles FA. The short-latency vergence eye movements elicited when disparity is applied to complex grating patterns: evidence for an energy-based detection mechanism. Journal of Vision. 4: 465-465. DOI: 10.1167/4.8.465 |
0.667 |
|
2004 |
Chen KJ, Sheliga BM, FitzGibbon EJ, Miles FA. The short-latency ocular following responses (OFR) elicited by position steps applied to complex grating patterns: evidence for energy-based and feature-based detection of motion. Journal of Vision. 4: 208-208. DOI: 10.1167/4.8.208 |
0.667 |
|
2003 |
Sheliga BM, Miles FA. Perception can influence the vergence responses associated with open-loop gaze shifts in 3D. Journal of Vision. 3: 654-76. PMID 14765951 DOI: 10.1167/3.11.2 |
0.672 |
|
2003 |
Sheliga BM, Miles FA. Perceived slant influences vergence responses during horizontal gaze shifts across a surface Journal of Vision. 3: 699a. DOI: 10.1167/3.9.699 |
0.625 |
|
2002 |
Sheliga BM, Brown VJ, Miles FA. Voluntary saccadic eye movements in humans studied with a double-cue paradigm. Vision Research. 42: 1897-915. PMID 12128020 DOI: 10.1016/S0042-6989(02)00101-3 |
0.603 |
|
1999 |
Sheliga BM, Yakushin SB, Silvers A, Raphan T, Cohen B. Control of spatial orientation of the angular vestibulo-ocular reflex by the nodulus and uvula of the vestibulocerebellum. Annals of the New York Academy of Sciences. 871: 94-122. PMID 10372065 DOI: 10.1111/J.1749-6632.1999.Tb09178.X |
0.75 |
|
1997 |
Sheliga BM, Craighero L, Riggio L, Rizzolatti G. Effects of spatial attention on directional manual and ocular responses. Experimental Brain Research. 114: 339-51. PMID 9166923 DOI: 10.1007/Pl00005642 |
0.312 |
|
1995 |
Sheliga BM, Riggio L, Craighero L, Rizzolatti G. Spatial attention-determined modifications in saccade trajectories. Neuroreport. 6: 585-8. PMID 7766869 DOI: 10.1097/00001756-199502000-00044 |
0.312 |
|
1994 |
Sheliga BM, Riggio L, Rizzolatti G. Orienting of attention and eye movements. Experimental Brain Research. 98: 507-22. PMID 8056071 DOI: 10.1007/BF00233988 |
0.349 |
|
1988 |
Sheliga BM, Shul'govskiÄ VV, Prokof'ev SK, Kustov AE, Moskvitin AA. [The hypothesis of the "efferent copy" in saccade programming in cats]. Neirì†Ofiziologiia = Neurophysiology. 20: 631-7. PMID 3211227 |
0.32 |
|
1987 |
Sheliga BM, Shul'govskiÄ VV, Prokof'ev SK, Moskvitin AA, Kustov AE. [Coordination of eye and head movements in cats]. Zhurnal Vyssheä Nervnoä Deiatelnosti Imeni I P Pavlova. 37: 1119-23. PMID 3448841 |
0.339 |
|
Show low-probability matches. |