Stephen Jose Hanson, Ph.D. - Publications

Affiliations: 
Psychology, RUBIC Rutgers University, New Brunswick, New Brunswick, NJ, United States 
Area:
Cognitive Neuroscience, Computational Neuroimaging
Website:
http://psychology.rutgers.edu/~jose/

46 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2024 Hanson SJ, Yadav V, Hanson C. Dense Sample Deep Learning. Neural Computation. 36: 1228-1244. PMID 38669696 DOI: 10.1162/neco_a_01666  0.634
2022 Gee DG, Hanson C, Caglar LR, Fareri DS, Gabard-Durnam LJ, Mills-Finnerty C, Goff B, Caldera CJ, Lumian DS, Flannery J, Hanson SJ, Tottenham N. Experimental evidence for a child-to-adolescent switch in human amygdala-prefrontal cortex communication: A cross-sectional pilot study. Developmental Science. e13238. PMID 35080089 DOI: 10.1111/desc.13238  0.703
2020 Mills-Finnerty C, Hanson C, Khadr M, Hanson SJ. Computations and connectivity underlying aversive counterfactuals. Brain Connectivity. PMID 32842766 DOI: 10.1089/Brain.2020.0766  0.754
2020 Frazier-Logue N, Hanson SJ. The Stochastic Delta Rule: Faster and More Accurate Deep Learning through Adaptive Weight Noise. Neural Computation. 1-15. PMID 32187001 DOI: 10.1162/Neco_A_01276  0.323
2019 Reid AT, Headley DB, Mill RD, Sanchez-Romero R, Uddin LQ, Marinazzo D, Lurie DJ, Valdés-Sosa PA, Hanson SJ, Biswal BB, Calhoun V, Poldrack RA, Cole MW. Advancing functional connectivity research from association to causation. Nature Neuroscience. PMID 31611705 DOI: 10.1038/S41593-019-0510-4  0.379
2018 Hanson C, Caglar LR, Hanson SJ. Attentional Bias in Human Category Learning: The Case of Deep Learning. Frontiers in Psychology. 9: 374. PMID 29706907 DOI: 10.3389/Fpsyg.2018.00374  0.747
2018 Mastrovito D, Hanson C, Hanson SJ. Differences in atypical resting-state effective connectivity distinguish autism from schizophrenia. Neuroimage. Clinical. 18: 367-376. PMID 29487793 DOI: 10.1016/J.Nicl.2018.01.014  0.755
2017 Çağlar LR, Hanson SJ. Back to the future: The return of cognitive functionalism. The Behavioral and Brain Sciences. 40: e257. PMID 29342686 DOI: 10.1017/S0140525X17000061  0.757
2017 Ray S, Biswal BB, Aya A, Gohel S, Srinagesh A, Hanson C, Hanson SJ. Modeling Causal Relationships among Brain Areas in the Mesocorticolimbic System during Resting-State in Cocaine Users Utilizing a Graph Theoretic Approach. Journal of Alcoholism and Drug Dependence. 5. PMID 29034263 DOI: 10.4172/2329-6488.1000279  0.486
2015 Ray S, Haney M, Hanson C, Biswal B, Hanson SJ. Modeling Causal Relationship Between Brain Regions Within the Drug-Cue Processing Network in Chronic Cocaine Smokers. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology. PMID 26038158 DOI: 10.1038/Npp.2015.150  0.491
2015 Ray S, Hanson C, Haney M, Biswal B, Hanson SJ. Modeling causal relationship between memory and craving-related brain networks in non-treatment seeking cocaine smokers using images, a graph theoretic approach Drug and Alcohol Dependence. 146: e77. DOI: 10.1016/J.Drugalcdep.2014.09.578  0.493
2014 Mills-Finnerty C, Hanson C, Hanson SJ. Brain network response underlying decisions about abstract reinforcers. Neuroimage. 103: 48-54. PMID 25234115 DOI: 10.1016/J.Neuroimage.2014.09.019  0.761
2014 Boukrina O, Hanson SJ, Hanson C. Modeling activation and effective connectivity of VWFA in same script bilinguals. Human Brain Mapping. 35: 2543-60. PMID 24038636 DOI: 10.1002/Hbm.22348  0.502
2014 Barbu A, Barrett DP, Chen W, Siddharth N, Xiong C, Corso JJ, Fellbaum CD, Hanson C, Hanson SJ, Hélie S, Malaia E, Pearlmutter BA, Siskind JM, Talavage TM, Wilbur RB. Seeing is worse than believing: Reading people's minds better than computer-vision methods recognize actions Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 8693: 612-627. DOI: 10.1007/978-3-319-10602-1_40  0.64
2013 Hanson C, Hanson SJ, Ramsey J, Glymour C. Atypical effective connectivity of social brain networks in individuals with autism. Brain Connectivity. 3: 578-89. PMID 24093627 DOI: 10.1089/Brain.2013.0161  0.543
2013 XU C, DOELL RF, HANSON SJ, HANSON C, CORSO JJ. A STUDY OF ACTOR AND ACTION SEMANTIC RETENTION IN VIDEO SUPERVOXEL SEGMENTATION International Journal of Semantic Computing. 7: 353-375. DOI: 10.1142/S1793351X13400114  0.482
2013 Xu C, Doell RF, Hanson SJ, Hanson C, Corso JJ. Are actor and action semantics retained in video supervoxel segmentation? Proceedings - 2013 Ieee 7th International Conference On Semantic Computing, Icsc 2013. 286-293. DOI: 10.1109/ICSC.2013.56  0.359
2012 Manelis A, Reder LM, Hanson SJ. Dynamic changes in the medial temporal lobe during incidental learning of object-location associations. Cerebral Cortex (New York, N.Y. : 1991). 22: 828-37. PMID 21709179 DOI: 10.1093/Cercor/Bhr151  0.704
2011 Manelis A, Hanson C, Hanson SJ. Implicit memory for object locations depends on reactivation of encoding-related brain regions. Human Brain Mapping. 32: 32-50. PMID 21157878 DOI: 10.1002/Hbm.20992  0.721
2011 Hanson SJ, Schmidt A. High-resolution imaging of the fusiform face area (FFA) using multivariate non-linear classifiers shows diagnosticity for non-face categories. Neuroimage. 54: 1715-34. PMID 20736071 DOI: 10.1016/J.Neuroimage.2010.08.028  0.617
2010 Ray S, Hanson C, Hanson SJ, Bates ME. fMRI BOLD response in high-risk college students (Part 1): during exposure to alcohol, marijuana, polydrug and emotional picture cues. Alcohol and Alcoholism (Oxford, Oxfordshire). 45: 437-43. PMID 20729530 DOI: 10.1093/Alcalc/Agq042  0.481
2010 Ray S, Hanson C, Hanson SJ, Rahman RM, Bates ME. fMRI BOLD response of high-risk college students (Part 2): during memory priming of alcohol, marijuana and polydrug picture cues. Alcohol and Alcoholism (Oxford, Oxfordshire). 45: 444-8. PMID 20729527 DOI: 10.1093/Alcalc/Agq043  0.496
2010 Ramsey JD, Hanson SJ, Hanson C, Halchenko YO, Poldrack RA, Glymour C. Six problems for causal inference from fMRI. Neuroimage. 49: 1545-58. PMID 19747552 DOI: 10.1016/J.Neuroimage.2009.08.065  0.71
2010 Poldrack RA, Halchenko YO, Hanson SJ. Erratum to: Decoding the large-scale structure of brain function by classifying mental states across individuals, (Psychological science, (2009), 20, 11 (1364-1372), 10.1111/j.1467-9280.2009.02460) Psychological Science. 21. DOI: 10.1177/0956797610373375  0.633
2009 Poldrack RA, Halchenko YO, Hanson SJ. Decoding the large-scale structure of brain function by classifying mental States across individuals. Psychological Science. 20: 1364-72. PMID 19883493 DOI: 10.1111/J.1467-9280.2009.02460.X  0.67
2009 Hanke M, Halchenko YO, Sederberg PB, Olivetti E, Fründ I, Rieger JW, Herrmann CS, Haxby JV, Hanson SJ, Pollmann S. PyMVPA: A Unifying Approach to the Analysis of Neuroscientific Data. Frontiers in Neuroinformatics. 3: 3. PMID 19212459 DOI: 10.3389/Neuro.11.003.2009  0.749
2009 Hanke M, Halchenko YO, Sederberg PB, Hanson SJ, Haxby JV, Pollmann S. PyMVPA: A python toolbox for multivariate pattern analysis of fMRI data. Neuroinformatics. 7: 37-53. PMID 19184561 DOI: 10.1007/S12021-008-9041-Y  0.766
2009 Hanson SJ, Gagliardi AD, Hanson C. Solving the brain synchrony eigenvalue problem: conservation of temporal dynamics (fMRI) over subjects doing the same task. Journal of Computational Neuroscience. 27: 103-14. PMID 19104925 DOI: 10.1007/S10827-008-0129-Z  0.749
2008 Hanson SJ, Halchenko YO. Brain reading using full brain support vector machines for object recognition: there is no "face" identification area. Neural Computation. 20: 486-503. PMID 18047411 DOI: 10.1162/Neco.2007.09-06-340  0.663
2008 Hanson S, Schmidt A. High Resolution Imaging of the Fusiform Face Area (FFA) Using Nonlinear Classifiers Shows Diagnosticity for Nonface Categories Nature Precedings. 3: 1-1. DOI: 10.1038/Npre.2008.2235.1  0.622
2007 Hanson SJ, Hanson C, Halchenko Y, Matsuka T, Zaimi A. Bottom-up and top-down brain functional connectivity underlying comprehension of everyday visual action. Brain Structure & Function. 212: 231-44. PMID 17968590 DOI: 10.1007/S00429-007-0160-2  0.767
2007 Hanson SJ, Rebecchi R, Hanson C, Halchenko YO. Dense mode clustering in brain maps. Magnetic Resonance Imaging. 25: 1249-62. PMID 17459639 DOI: 10.1016/J.Mri.2007.03.013  0.671
2005 Hanson C, Hanson SJ. Categorization in Neuroscience: Brain Response to Objects and Events Handbook of Categorization in Cognitive Science. 119-140. DOI: 10.1016/B978-008044612-7/50060-3  0.441
2004 Hanson SJ, Matsuka T, Haxby JV. Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: is there a "face" area? Neuroimage. 23: 156-66. PMID 15325362 DOI: 10.1016/J.Neuroimage.2004.05.020  0.547
2004 Bly BM, Rebbechi D, Hanson SJ, Grasso G. The RUMBA software: tools for neuroimaging data analysis. Neuroinformatics. 2: 71-100. PMID 15067169 DOI: 10.1385/Ni:2:1:071  0.315
2002 Hanson SJ, Negishi M. On the emergence of rules in neural networks. Neural Computation. 14: 2245-68. PMID 12184850 DOI: 10.1162/089976602320264079  0.378
1996 Hanson C, Hanson SJ. Development of Schemata during Event Parsing: Neisser's Perceptual Cycle as a Recurrent Connectionist Network. Journal of Cognitive Neuroscience. 8: 119-34. PMID 23971419 DOI: 10.1162/Jocn.1996.8.2.119  0.501
1994 Schwanke RW, Hanson SJ. Using Neural Networks to Modularize Software Machine Learning. 15: 137-168. DOI: 10.1023/A:1022669305303  0.372
1991 HANSON SJ, OLSON CR. A Review of: “Neural Networks and Natural Intelligence: Notes from Mudville” Stephen Grossberg (Ed.) Cambridge, MA: MIT/Bradford, 1989 ISBN 0-262-07107-x, 544pp., £31.95 Connection Science. 3: 332-335. DOI: 10.1080/09540099108946591  0.56
1990 Hanson SJ, Burr DJ. What connectionist models learn: Learning and representation in connectionist networks Behavioral and Brain Sciences. 13: 471-518. DOI: 10.1017/S0140525X00079760  0.393
1990 Hanson SJ. Conceptual clustering and categorization: bridging the gap between induction and causal models Machine Learning. 235-268. DOI: 10.1016/B978-0-08-051055-2.50015-8  0.348
1990 Hanson SJ. A stochastic version of the delta rule Physica D: Nonlinear Phenomena. 42: 265-272. DOI: 10.1016/0167-2789(90)90081-Y  0.303
1983 Hanson SJ, Timberlake W. Regulation during challenge: A general model of learned performance under schedule constraint Psychological Review. 90: 261-282. DOI: 10.1037/0033-295X.90.3.261  0.302
1981 Hanson SJ, Killeen PR. Measurement and modeling of behavior under fixed-interval schedules of reinforcement Journal of Experimental Psychology: Animal Behavior Processes. 7: 129-139. DOI: 10.1037//0097-7403.7.2.129  0.501
1981 Killeen PR, Phillip Smith J, Hanson SJ. Central place foraging in Rattus norvegicus Animal Behaviour. 29: 64-70. DOI: 10.1016/S0003-3472(81)80152-2  0.523
1978 Killeen PR, Hanson SJ, Osborne SR. Arousal: its genesis and manifestation as response rate. Psychological Review. 85: 571-81. PMID 734020 DOI: 10.1037/0033-295X.85.6.571  0.5
Show low-probability matches.