Year |
Citation |
Score |
2022 |
Midorikawa M. Developmental and activity-dependent modulation of coupling distance between release site and Ca channel. Frontiers in Cellular Neuroscience. 16: 1037721. PMID 36385953 DOI: 10.3389/fncel.2022.1037721 |
0.466 |
|
2021 |
Midorikawa M, Miyata M. Distinct functional developments of surviving and eliminated presynaptic terminals. Proceedings of the National Academy of Sciences of the United States of America. 118. PMID 33688051 DOI: 10.1073/pnas.2022423118 |
0.375 |
|
2020 |
Miki T, Midorikawa M, Sakaba T. Direct imaging of rapid tethering of synaptic vesicles accompanying exocytosis at a fast central synapse. Proceedings of the National Academy of Sciences of the United States of America. 117: 14493-14502. PMID 32513685 DOI: 10.1073/pnas.2000265117 |
0.693 |
|
2018 |
Midorikawa M. Real-time imaging of synaptic vesicle exocytosis by total internal reflection fluorescence (TIRF) microscopy. Neuroscience Research. PMID 29408514 DOI: 10.1016/j.neures.2018.01.008 |
0.455 |
|
2017 |
Midorikawa M, Sakaba T. Kinetics of Releasable Synaptic Vesicles and Their Plastic Changes at Hippocampal Mossy Fiber Synapses. Neuron. PMID 29103807 DOI: 10.1016/j.neuron.2017.10.016 |
0.697 |
|
2016 |
Okamoto Y, Lipstein N, Hua Y, Lin KH, Brose N, Sakaba T, Midorikawa M. Distinct modes of endocytotic presynaptic membrane and protein uptake at the calyx of Held terminal of rats and mice. Elife. 5. PMID 27154627 DOI: 10.7554/eLife.14643 |
0.683 |
|
2015 |
Midorikawa M, Sakaba T. Imaging Exocytosis of Single Synaptic Vesicles at a Fast CNS Presynaptic Terminal. Neuron. 88: 492-8. PMID 26539890 DOI: 10.1016/j.neuron.2015.09.047 |
0.723 |
|
2014 |
Midorikawa M, Okamoto Y, Sakaba T. Developmental changes in Ca2+ channel subtypes regulating endocytosis at the calyx of Held. The Journal of Physiology. 592: 3495-510. PMID 24907302 DOI: 10.1113/jphysiol.2014.273243 |
0.607 |
|
2011 |
Almers W, Barg S, Chen X, Knowles M, Midorikawa M, Wan L. Watching the Exocytosis of Secretory Vesicles in Live Cells Microscopy and Microanalysis. 17: 46-47. DOI: 10.1017/S1431927611001103 |
0.603 |
|
2010 |
Barg S, Knowles MK, Chen X, Midorikawa M, Almers W. Syntaxin clusters assemble reversibly at sites of secretory granules in live cells. Proceedings of the National Academy of Sciences of the United States of America. 107: 20804-9. PMID 21076041 DOI: 10.1073/Pnas.1014823107 |
0.602 |
|
2010 |
Knowles MK, Barg S, Wan L, Midorikawa M, Chen X, Almers W. Single secretory granules of live cells recruit syntaxin-1 and synaptosomal associated protein 25 (SNAP-25) in large copy numbers. Proceedings of the National Academy of Sciences of the United States of America. 107: 20810-5. PMID 21076040 DOI: 10.1073/Pnas.1014840107 |
0.596 |
|
2010 |
Midorikawa M, Almers W. Imaging the Disassembly of Syntxin Cluster during the Exocytosis of Single Secretory Granules Biophysical Journal. 98: 670a. DOI: 10.1016/j.bpj.2009.12.3679 |
0.656 |
|
2007 |
Midorikawa M, Tsukamoto Y, Berglund K, Ishii M, Tachibana M. Different roles of ribbon-associated and ribbon-free active zones in retinal bipolar cells. Nature Neuroscience. 10: 1268-76. PMID 17828257 DOI: 10.1038/Nn1963 |
0.677 |
|
2002 |
Berglund K, Midorikawa M, Tachibana M. Increase in the pool size of releasable synaptic vesicles by the activation of protein kinase C in goldfish retinal bipolar cells. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 22: 4776-85. PMID 12077174 DOI: 10.1523/Jneurosci.22-12-04776.2002 |
0.674 |
|
Show low-probability matches. |