cached image

Geoffrey J. Goodhill - Publications

Affiliations: 
University of Queensland, Saint Lucia, Queensland, Australia 
Area:
Computational neuroscience, axon guidance, visual system development
Website:
http://portretka.ru

64 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2021 Avitan L, Pujic Z, Mölter J, Zhu S, Sun B, Goodhill GJ. Spontaneous and evoked activity patterns diverge over development. Elife. 10. PMID 33871351 DOI: 10.7554/eLife.61942  0.724
2020 Constantin L, Poulsen RE, Scholz LA, Favre-Bulle IA, Taylor MA, Sun B, Goodhill GJ, Vanwalleghem GC, Scott EK. Altered brain-wide auditory networks in a zebrafish model of fragile X syndrome. Bmc Biology. 18: 125. PMID 32938458 DOI: 10.1186/S12915-020-00857-6  0.31
2020 Avitan L, Pujic Z, Mölter J, McCullough M, Zhu S, Sun B, Myhre AE, Goodhill GJ. Behavioral Signatures of a Developing Neural Code. Current Biology : Cb. 30: 3491-3493. PMID 32898486 DOI: 10.1016/j.cub.2020.08.009  0.73
2020 Avitan L, Pujic Z, Mölter J, McCullough M, Zhu S, Sun B, Myhre AE, Goodhill GJ. Behavioral Signatures of a Developing Neural Code. Current Biology : Cb. PMID 32710821 DOI: 10.1016/J.Cub.2020.06.040  0.752
2018 Bicknell BA, Pujic Z, Dayan P, Goodhill GJ. Control of neurite growth and guidance by an inhibitory cell-body signal. Plos Computational Biology. 14: e1006218. PMID 29927943 DOI: 10.1371/Journal.Pcbi.1006218  0.482
2018 Nguyen H, Dayan P, Pujic Z, Cooper-White J, Goodhill GJ. Retraction: A mathematical model explains saturating axon guidance responses to molecular gradients. Elife. 7. PMID 29642996 DOI: 10.7554/Elife.37048  0.517
2017 Avitan L, Pujic Z, Mölter J, Van De Poll M, Sun B, Teng H, Amor R, Scott EK, Goodhill GJ. Spontaneous Activity in the Zebrafish Tectum Reorganizes over Development and Is Influenced by Visual Experience. Current Biology : Cb. PMID 28781054 DOI: 10.1016/J.Cub.2017.06.056  0.308
2017 Bicknell BA, Dayan P, Goodhill GJ. Sensitivity and Robustness in an Axon Guidance Signaling System Biophysical Journal. 112: 136a. DOI: 10.1016/J.Bpj.2016.11.752  0.533
2016 Hughes NJ, Goodhill GJ. Estimating Cortical Feature Maps with Dependent Gaussian Processes. Ieee Transactions On Pattern Analysis and Machine Intelligence. PMID 27831860 DOI: 10.1109/Tpami.2016.2624295  0.303
2016 Cloherty SL, Hughes NJ, Hietanen MA, Bhagavatula PS, Goodhill GJ, Ibbotson MR. Sensory experience modifies feature map relationships in visual cortex. Elife. 5. PMID 27310531 DOI: 10.7554/Elife.13911  0.596
2016 Pujic Z, Nguyen H, Glass N, Cooper-White J, Goodhill GJ. Axon Guidance Studies Using a Microfluidics-Based Chemotropic Gradient Generator. Methods in Molecular Biology (Clifton, N.J.). 1407: 273-85. PMID 27271909 DOI: 10.1007/978-1-4939-3480-5_20  0.353
2016 Avitan L, Pujic Z, Hughes NJ, Scott EK, Goodhill GJ. Limitations of Neural Map Topography for Decoding Spatial Information. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 36: 5385-96. PMID 27170134 DOI: 10.1523/Jneurosci.0385-16.2016  0.336
2016 Chalmers K, Kita EM, Scott EK, Goodhill GJ. Quantitative Analysis of Axonal Branch Dynamics in the Developing Nervous System. Plos Computational Biology. 12: e1004813. PMID 26998842 DOI: 10.1371/Journal.Pcbi.1004813  0.344
2016 Nguyen H, Dayan P, Pujic Z, Cooper-White J, Goodhill GJ. A mathematical model explains saturating axon guidance responses to molecular gradients. Elife. 5. PMID 26830461 DOI: 10.7554/Elife.12248  0.529
2016 Cloherty SL, Hughes NJ, Hietanen MA, Bhagavatula PS, Goodhill GJ, Ibbotson MR. Author response: Sensory experience modifies feature map relationships in visual cortex Elife. DOI: 10.7554/Elife.13911.023  0.576
2015 Xu J, Rosoff WJ, Urbach JS, Goodhill GJ. Adaptation is not required to explain the long-term response of axons to molecular gradients. Development (Cambridge, England). 142: 2385. PMID 26130758 DOI: 10.1242/dev.127316  0.757
2015 Sutherland DJ, Goodhill GJ. The interdependent roles of Ca(2+) and cAMP in axon guidance. Developmental Neurobiology. 75: 402-10. PMID 25783999 DOI: 10.1002/Dneu.22144  0.309
2015 Goodhill GJ, Faville RA, Sutherland DJ, Bicknell BA, Thompson AW, Pujic Z, Sun B, Kita EM, Scott EK. The dynamics of growth cone morphology. Bmc Biology. 13: 10. PMID 25729914 DOI: 10.1186/S12915-015-0115-7  0.346
2015 Kita EM, Scott EK, Goodhill GJ. The influence of activity on axon pathfinding in the optic tectum. Developmental Neurobiology. 75: 608-20. PMID 25556913 DOI: 10.1002/Dneu.22262  0.37
2015 Nguyen H, Dayan P, Goodhill GJ. How receptor diffusion influences gradient sensing. Journal of the Royal Society, Interface / the Royal Society. 12: 20141097. PMID 25551145 DOI: 10.1098/Rsif.2014.1097  0.462
2015 Kita EM, Scott EK, Goodhill GJ. Topographic wiring of the retinotectal connection in zebrafish. Developmental Neurobiology. 75: 542-56. PMID 25492632 DOI: 10.1002/Dneu.22256  0.314
2015 Nguyen H, Dayan P, Pujic Z, Cooper-White J, Goodhill GJ. Author response: A mathematical model explains saturating axon guidance responses to molecular gradients Elife. DOI: 10.7554/Elife.12248.032  0.508
2015 Bicknell BA, Dayan P, Goodhill GJ. The limits of chemosensation vary across dimensions Nature Communications. 6. DOI: 10.1038/ncomms8468  0.358
2014 Nguyen H, Dayan P, Goodhill GJ. The influence of receptor positioning on chemotactic information. Journal of Theoretical Biology. 360: 95-101. PMID 24997237 DOI: 10.1016/J.Jtbi.2014.06.022  0.452
2014 Sutherland DJ, Pujic Z, Goodhill GJ. Calcium signaling in axon guidance. Trends in Neurosciences. 37: 424-32. PMID 24969461 DOI: 10.1016/J.Tins.2014.05.008  0.317
2014 Suárez R, Fenlon LR, Marek R, Avitan L, Sah P, Goodhill GJ, Richards LJ. Balanced interhemispheric cortical activity is required for correct targeting of the corpus callosum. Neuron. 82: 1289-98. PMID 24945772 DOI: 10.1016/J.Neuron.2014.04.040  0.311
2014 Hughes NJ, Hunt JJ, Cloherty SL, Ibbotson MR, Sengpiel F, Goodhill GJ. Stripe-rearing changes multiple aspects of the structure of primary visual cortex. Neuroimage. 95: 305-19. PMID 24657308 DOI: 10.1016/J.Neuroimage.2014.03.031  0.589
2014 Fothergill T, Donahoo AL, Douglass A, Zalucki O, Yuan J, Shu T, Goodhill GJ, Richards LJ. Netrin-DCC signaling regulates corpus callosum formation through attraction of pioneering axons and by modulating Slit2-mediated repulsion. Cerebral Cortex (New York, N.Y. : 1991). 24: 1138-51. PMID 23302812 DOI: 10.1093/Cercor/Bhs395  0.351
2013 Hunt JJ, Dayan P, Goodhill GJ. Sparse coding can predict primary visual cortex receptive field changes induced by abnormal visual input. Plos Computational Biology. 9: e1003005. PMID 23675290 DOI: 10.1371/Journal.Pcbi.1003005  0.485
2013 Yuan J, Chan S, Mortimer D, Nguyen H, Goodhill GJ. Optimality and saturation in axonal chemotaxis. Neural Computation. 25: 833-53. PMID 23339614 DOI: 10.1162/Neco_A_00426  0.571
2013 Simpson HD, Kita EM, Scott EK, Goodhill GJ. A quantitative analysis of branching, growth cone turning, and directed growth in zebrafish retinotectal axon guidance. The Journal of Comparative Neurology. 521: 1409-29. PMID 23124714 DOI: 10.1002/Cne.23248  0.36
2012 Hunt JJ, Ibbotson M, Goodhill GJ. Sparse coding on the spot: spontaneous retinal waves suffice for orientation selectivity. Neural Computation. 24: 2422-33. PMID 22734490 DOI: 10.1162/Neco_A_00333  0.574
2012 Hunt JJ, Mattingley JB, Goodhill GJ. Randomly oriented edge arrangements dominate naturalistic arrangements in binocular rivalry. Vision Research. 64: 49-55. PMID 22687634 DOI: 10.1016/J.Visres.2012.05.007  0.513
2012 Forbes EM, Thompson AW, Yuan J, Goodhill GJ. Calcium and cAMP levels interact to determine attraction versus repulsion in axon guidance. Neuron. 74: 490-503. PMID 22578501 DOI: 10.1016/J.Neuron.2012.02.035  0.358
2011 Thompson AW, Pujic Z, Richards LJ, Goodhill GJ. Cyclic nucleotide-dependent switching of mammalian axon guidance depends on gradient steepness. Molecular and Cellular Neurosciences. 47: 45-52. PMID 21376124 DOI: 10.1016/J.Mcn.2011.02.012  0.362
2011 Mortimer D, Dayan P, Burrage K, Goodhill GJ. Bayes-optimal chemotaxis. Neural Computation. 23: 336-73. PMID 21105826 DOI: 10.1162/Neco_A_00075  0.623
2010 Mortimer D, Pujic Z, Vaughan T, Thompson AW, Feldner J, Vetter I, Goodhill GJ. Axon guidance by growth-rate modulation. Proceedings of the National Academy of Sciences of the United States of America. 107: 5202-7. PMID 20194766 DOI: 10.1073/Pnas.0909254107  0.518
2010 Giacomantonio CE, Ibbotson MR, Goodhill GJ. The influence of restricted orientation rearing on map structure in primary visual cortex. Neuroimage. 52: 875-83. PMID 20035888 DOI: 10.1016/J.Neuroimage.2009.12.066  0.593
2010 Mortimer D, Dayan P, Burrage K, Goodhill GJ. Optimizing chemotaxis by measuring unbound-bound transitions Physica D: Nonlinear Phenomena. 239: 477-484. DOI: 10.1016/J.Physd.2009.09.009  0.614
2010 Mortimer D, Goodhill GJ. Axonal Pathfinding Encyclopedia of Neuroscience. 1133-1138. DOI: 10.1016/B978-008045046-9.01412-1  0.462
2009 Rosoff WJ, McAllister RG, Goodhill GJ, Urbach JS. Quantitative studies of neuronal chemotaxis in 3D. Methods in Molecular Biology (Clifton, N.J.). 571: 239-54. PMID 19763971 DOI: 10.1007/978-1-60761-198-1_16  0.763
2009 Pujic Z, Mortimer D, Feldner J, Goodhill GJ. Assays for eukaryotic cell chemotaxis. Combinatorial Chemistry & High Throughput Screening. 12: 580-8. PMID 19601755 DOI: 10.2174/138620709788681952  0.518
2009 Mortimer D, Feldner J, Vaughan T, Vetter I, Pujic Z, Rosoff WJ, Burrage K, Dayan P, Richards LJ, Goodhill GJ. Bayesian model predicts the response of axons to molecular gradients. Proceedings of the National Academy of Sciences of the United States of America. 106: 10296-301. PMID 19541606 DOI: 10.1073/Pnas.0900715106  0.766
2009 Simpson HD, Mortimer D, Goodhill GJ. Theoretical models of neural circuit development. Current Topics in Developmental Biology. 87: 1-51. PMID 19427515 DOI: 10.1016/S0070-2153(09)01201-0  0.518
2009 Hunt JJ, Giacomantonio CE, Tang H, Mortimer D, Jaffer S, Vorobyov V, Ericksson G, Sengpiel F, Goodhill GJ. Natural scene statistics and the structure of orientation maps in the visual cortex. Neuroimage. 47: 157-72. PMID 19345738 DOI: 10.1016/J.Neuroimage.2009.03.052  0.547
2008 Pujic Z, Giacomantonio CE, Unni D, Rosoff WJ, Goodhill GJ. Analysis of the growth cone turning assay for studying axon guidance. Journal of Neuroscience Methods. 170: 220-8. PMID 18313760 DOI: 10.1016/J.Jneumeth.2008.01.014  0.751
2008 Mortimer D, Fothergill T, Pujic Z, Richards LJ, Goodhill GJ. Growth cone chemotaxis. Trends in Neurosciences. 31: 90-8. PMID 18201774 DOI: 10.1016/J.Tins.2007.11.008  0.563
2008 Goodhill G, Baker C, Balasubramanian V, Bazhenov M, Beck J, Becker S, Bethge M, Boahen K, Boden M, Bonin V, Bouret S, Fairhall A, Flash T, French R, Gillies A, et al. Network: Computation in Neural Systems: Editorial Network: Computation in Neural Systems. 19: 1-2. DOI: 10.1080/09548980801915409  0.679
2005 Goodhill GJ, Xu J. The development of retinotectal maps: a review of models based on molecular gradients. Network (Bristol, England). 16: 5-34. PMID 16353341 DOI: 10.1080/09548980500254654  0.33
2005 Xu J, Rosoff WJ, Urbach JS, Goodhill GJ. Adaptation is not required to explain the long-term response of axons to molecular gradients. Development (Cambridge, England). 132: 4545-52. PMID 16176951 DOI: 10.1242/Dev.02029  0.78
2005 Rosoff WJ, McAllister R, Esrick MA, Goodhill GJ, Urbach JS. Generating controlled molecular gradients in 3D gels. Biotechnology and Bioengineering. 91: 754-9. PMID 15981274 DOI: 10.1002/Bit.20564  0.753
2005 Carreira-Perpiñán MA, Dayan P, Goodhill GJ. Differential priors for elastic nets Lecture Notes in Computer Science. 3578: 335-342.  0.325
2004 Goodhill GJ, Gu M, Urbach JS. Predicting axonal response to molecular gradients with a computational model of filopodial dynamics. Neural Computation. 16: 2221-43. PMID 15476599 DOI: 10.1162/0899766041941934  0.388
2004 Rosoff WJ, Urbach JS, Esrick MA, McAllister RG, Richards LJ, Goodhill GJ. A new chemotaxis assay shows the extreme sensitivity of axons to molecular gradients. Nature Neuroscience. 7: 678-82. PMID 15162167 DOI: 10.1038/Nn1259  0.774
2004 Rosoff W, Urbach J, Esrick M, McAllister R, Richards L, Goodhill G. A new chemotaxis assay shows the extreme sensitivity of axons to molecular gradients (vol 7, pg 678, 2004) Nature Neuroscience. 7: 785-785. DOI: 10.1038/Nn0704-785  0.336
1999 Goodhill GJ, Urbach JS. Theoretical analysis of gradient detection by growth cones. Journal of Neurobiology. 41: 230-41. PMID 10512980 DOI: 10.1002/(Sici)1097-4695(19991105)41:2<230::Aid-Neu6>3.0.Co;2-9  0.335
1999 Urbach JS, Goodhill GJ. Limitations on detection of gradients of diffusible chemicals by axons Neurocomputing. 26: 39-43. DOI: 10.1016/S0925-2312(99)00086-7  0.343
1998 Goodhill GJ, Baier H. Axon guidance: stretching gradients to the limit. Neural Computation. 10: 521-7. PMID 9527831 DOI: 10.1162/089976698300017638  0.374
1997 Goodhill GJ, Bates KR, Montague PR. Influences on the global structure of cortical maps. Proceedings. Biological Sciences / the Royal Society. 264: 649-55. PMID 9178536 DOI: 10.1098/Rspb.1997.0092  0.678
1997 Goodhill GJ, Sejnowski TJ. A Unifying Objective Function for Topographic Mappings Neural Computation. 9: 1291-1303. DOI: 10.1162/Neco.1997.9.6.1291  0.551
1995 Goodhill GJ, Simmen MW, Willshaw DJ. An evaluation of the use of multidimensional scaling for understanding brain connectivity. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 348: 265-80. PMID 8577826 DOI: 10.1098/Rstb.1995.0068  0.596
1994 Simmen MW, Goodhill GJ, Willshaw DJ. Scaling and brain connectivity. Nature. 369: 448-50. PMID 8202134 DOI: 10.1038/369448B0  0.559
1994 Goodhill GJ, Willshaw DJ. Elastic Net Model of Ocular Dominance: Overall Stripe Pattern and Monocular Deprivation Neural Computation. 6: 615-621. DOI: 10.1162/Neco.1994.6.4.615  0.604
1990 Goodhill GJ, Willshaw DJ. Application of the elastic net algorithm to the formation of ocular dominance stripes Network: Computation in Neural Systems. 1: 41-59. DOI: 10.1088/0954-898X/1/1/004  0.577
Show low-probability matches.