Mehdi Khamassi - Publications

Affiliations: 
Institute of Intelligent Systems and Robotics CNRS / UPMC - ISIR 
Area:
Decision-making, reinforcement learning, prefrontal cortex, striatum, computational modelling, neurophysiology
Website:
http://www.isir.upmc.fr/?op=view_profil&nom=khamassi&id=82&lang=en

40 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2020 Khamassi M, Girard B. Modeling awake hippocampal reactivations with model-based bidirectional search. Biological Cybernetics. PMID 32065253 DOI: 10.1007/s00422-020-00817-x  1
2019 Cinotti F, Marchand AR, Roesch MR, Girard B, Khamassi M. Impacts of inter-trial interval duration on a computational model of sign-tracking vs. goal-tracking behaviour. Psychopharmacology. PMID 31367850 DOI: 10.1007/s00213-019-05323-y  1
2019 Genzel L, Schut E, Schröder T, Eichler R, Khamassi M, Gomez A, Navarro Lobato I, Battaglia F. The object space task shows cumulative memory expression in both mice and rats. Plos Biology. 17: e3000322. PMID 31206519 DOI: 10.1371/journal.pbio.3000322  0.52
2019 Cinotti F, Fresno V, Aklil N, Coutureau E, Girard B, Marchand AR, Khamassi M. Dopamine blockade impairs the exploration-exploitation trade-off in rats. Scientific Reports. 9: 6770. PMID 31043685 DOI: 10.1038/s41598-019-43245-z  1
2018 Bavard S, Lebreton M, Khamassi M, Coricelli G, Palminteri S. Reference-point centering and range-adaptation enhance human reinforcement learning at the cost of irrational preferences. Nature Communications. 9: 4503. PMID 30374019 DOI: 10.1038/s41467-018-06781-2  1
2018 Cazé R, Khamassi M, Aubin L, Girard B. Hippocampal replays under the scrutiny of reinforcement learning models. Journal of Neurophysiology. PMID 30303758 DOI: 10.1152/jn.00145.2018  1
2018 Lee B, Gentry RN, Bissonette GB, Herman RJ, Mallon JJ, Bryden DW, Calu DJ, Schoenbaum G, Coutureau E, Marchand AR, Khamassi M, Roesch MR. Manipulating the revision of reward value during the intertrial interval increases sign tracking and dopamine release. Plos Biology. 16: e2004015. PMID 30256785 DOI: 10.1371/journal.pbio.2004015  1
2018 Dollé L, Chavarriaga R, Guillot A, Khamassi M. Interactions of spatial strategies producing generalization gradient and blocking: A computational approach. Plos Computational Biology. 14: e1006092. PMID 29630600 DOI: 10.1371/journal.pcbi.1006092  1
2017 Viejo G, Girard B, Procyk E, Khamassi M. Adaptive coordination of working-memory and reinforcement learning in non-human primates performing a trial-and-error problem solving task. Behavioural Brain Research. PMID 29061387 DOI: 10.1016/j.bbr.2017.09.030  1
2015 Viejo G, Khamassi M, Brovelli A, Girard B. Modeling choice and reaction time during arbitrary visuomotor learning through the coordination of adaptive working memory and reinforcement learning. Frontiers in Behavioral Neuroscience. 9: 225. PMID 26379518 DOI: 10.3389/fnbeh.2015.00225  1
2015 Palminteri S, Khamassi M, Joffily M, Coricelli G. Contextual modulation of value signals in reward and punishment learning. Nature Communications. 6: 8096. PMID 26302782 DOI: 10.1038/ncomms9096  1
2015 Lesaint F, Sigaud O, Clark JJ, Flagel SB, Khamassi M. Experimental predictions drawn from a computational model of sign-trackers and goal-trackers. Journal of Physiology, Paris. 109: 78-86. PMID 24954026 DOI: 10.1016/j.jphysparis.2014.06.001  1
2015 Viejo G, Khamassi M, Brovelli A, Girard B. Modeling choice and reaction time during arbitrary visuomotor learning through the coordination of adaptive working memory and reinforcement learning Frontiers in Behavioral Neuroscience. 9. DOI: 10.3389/fnbeh.2015.00225  1
2015 Palminteri S, Khamassi M, Joffily M, Coricelli G. Contextual modulation of value signals in reward and punishment learning Nature Communications. 6. DOI: 10.1038/ncomms9096  1
2014 Lesaint F, Sigaud O, Khamassi M. Accounting for negative automaintenance in pigeons: a dual learning systems approach and factored representations. Plos One. 9: e111050. PMID 25347531 DOI: 10.1371/journal.pone.0111050  1
2014 Khamassi M, Quilodran R, Enel P, Dominey PF, Procyk E. Behavioral Regulation and the Modulation of Information Coding in the Lateral Prefrontal and Cingulate Cortex. Cerebral Cortex (New York, N.Y. : 1991). PMID 24904073 DOI: 10.1093/cercor/bhu114  1
2014 Lesaint F, Sigaud O, Flagel SB, Robinson TE, Khamassi M. Modelling individual differences in the form of Pavlovian conditioned approach responses: a dual learning systems approach with factored representations. Plos Computational Biology. 10: e1003466. PMID 24550719 DOI: 10.1371/journal.pcbi.1003466  1
2014 Renaudo E, Girard B, Chatila R, Khamassi M. Design of a control architecture for habit learning in robots Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 8608: 249-260. DOI: 10.1007/978-3-319-09435-9_22  1
2013 Arleo A, Déjean C, Allegraud P, Khamassi M, Zugaro MB, Wiener SI. Optic flow stimuli update anterodorsal thalamus head direction neuronal activity in rats. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 33: 16790-5. PMID 24133279 DOI: 10.1523/JNEUROSCI.2698-13.2013  1
2013 Cos I, Khamassi M, Girard B. Modelling the learning of biomechanics and visual planning for decision-making of motor actions. Journal of Physiology, Paris. 107: 399-408. PMID 23973913 DOI: 10.1016/j.jphysparis.2013.07.004  1
2013 Khamassi M, Enel P, Dominey PF, Procyk E. Medial prefrontal cortex and the adaptive regulation of reinforcement learning parameters. Progress in Brain Research. 202: 441-64. PMID 23317844 DOI: 10.1016/B978-0-444-62604-2.00022-8  1
2012 Khamassi M, Humphries MD. Integrating cortico-limbic-basal ganglia architectures for learning model-based and model-free navigation strategies. Frontiers in Behavioral Neuroscience. 6: 79. PMID 23205006 DOI: 10.3389/fnbeh.2012.00079  1
2012 Caluwaerts K, Staffa M, N'Guyen S, Grand C, Dollé L, Favre-Félix A, Girard B, Khamassi M. A biologically inspired meta-control navigation system for the Psikharpax rat robot. Bioinspiration & Biomimetics. 7: 025009. PMID 22617382 DOI: 10.1088/1748-3182/7/2/025009  1
2012 Humphries MD, Khamassi M, Gurney K. Dopaminergic Control of the Exploration-Exploitation Trade-Off via the Basal Ganglia. Frontiers in Neuroscience. 6: 9. PMID 22347155 DOI: 10.3389/fnins.2012.00009  1
2012 Bellot J, Sigaud O, Khamassi M. Which temporal difference learning algorithm best reproduces dopamine activity in a multi-choice task? Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 7426: 289-298. DOI: 10.1007/978-3-642-33093-3_29  1
2012 Caluwaerts K, Favre-Félix A, Staffa M, N'Guyen S, Grand C, Girard B, Khamassi M. Neuro-inspired navigation strategies shifting for robots: Integration of a multiple landmark taxon strategy Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 7375: 62-73. DOI: 10.1007/978-3-642-31525-1_6  1
2011 Khamassi M, Lallée S, Enel P, Procyk E, Dominey PF. Robot cognitive control with a neurophysiologically inspired reinforcement learning model. Frontiers in Neurorobotics. 5: 1. PMID 21808619 DOI: 10.3389/fnbot.2011.00001  1
2010 Benchenane K, Peyrache A, Khamassi M, Tierney PL, Gioanni Y, Battaglia FP, Wiener SI. Coherent theta oscillations and reorganization of spike timing in the hippocampal- prefrontal network upon learning. Neuron. 66: 921-36. PMID 20620877 DOI: 10.1016/j.neuron.2010.05.013  1
2010 Peyrache A, Benchenane K, Khamassi M, Wiener SI, Battaglia FP. Sequential Reinstatement of Neocortical Activity during Slow Oscillations Depends on Cells' Global Activity. Frontiers in Systems Neuroscience. 3: 18. PMID 20130754 DOI: 10.3389/neuro.06.018.2009  1
2010 Peyrache A, Benchenane K, Khamassi M, Wiener SI, Battaglia FP. Principal component analysis of ensemble recordings reveals cell assemblies at high temporal resolution. Journal of Computational Neuroscience. 29: 309-25. PMID 19529888 DOI: 10.1007/s10827-009-0154-6  1
2010 Khamassi M, Quilodran R, Enel P, Procyk E, Dominey PF. A computational model of integration between reinforcement learning and task monitoring in the prefrontal cortex Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 6226: 424-434. DOI: 10.1007/978-3-642-15193-4_40  1
2010 Benchenane K, Peyrache A, Khamassi M, Tierney PL, Douchamps V, Battaglia FP, Wiener SI. Coherent oscillations and learning-related reorganization of spike timing 4th International Conference On Cognitive Systems, Cogsys 2010 1
2009 Peyrache A, Khamassi M, Benchenane K, Wiener SI, Battaglia FP. Replay of rule-learning related neural patterns in the prefrontal cortex during sleep. Nature Neuroscience. 12: 919-26. PMID 19483687 DOI: 10.1038/nn.2337  1
2008 Khamassi M, Mulder AB, Tabuchi E, Douchamps V, Wiener SI. Anticipatory reward signals in ventral striatal neurons of behaving rats. The European Journal of Neuroscience. 28: 1849-66. PMID 18973599 DOI: 10.1111/j.1460-9568.2008.06480.x  1
2008 Battaglia FP, Peyrache A, Khamassi M, Wiener SI. Spatial Decisions and Neuronal Activity in Hippocampal Projection Zones in Prefrontal Cortex and Striatum Hippocampal Place Fields: Relevance to Learning and Memory. DOI: 10.1093/acprof:oso/9780195323245.003.0021  1
2008 Dollé L, Khamassi M, Girard B, Guillot A, Chavarriaga R. Analyzing interactions between navigation strategies using a computational model of action selection Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 5248: 71-86. DOI: 10.1007/978-3-540-87601-4_8  1
2006 Khamassi M, Martinet LE, Guillot A. Combining self-organizing maps with mixtures of experts: Application to an actor-critic model of reinforcement learning in the basal ganglia Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 4095: 394-405.  1
2005 Khamassi M, Lachèze L, Girard B, Berthoz A, Guillot A. Actor-critic models of reinforcement learning in the basal ganglia: From natural to artificial rats Adaptive Behavior. 13: 131-148. DOI: 10.1177/105971230501300205  1
2005 Meyer JA, Guillot A, Girard B, Khamassi M, Pirim P, Berthoz A. The Psikharpax project: Towards building an artificial rat Robotics and Autonomous Systems. 50: 211-223. DOI: 10.1016/j.robot.2004.09.018  1
2004 Zugaro MB, Arleo A, Déjean C, Burguière E, Khamassi M, Wiener SI. Rat anterodorsal thalamic head direction neurons depend upon dynamic visual signals to select anchoring landmark cues. The European Journal of Neuroscience. 20: 530-6. PMID 15233762 DOI: 10.1111/j.1460-9568.2004.03512.x  1
Show low-probability matches.