Aswin K. Manohar, Ph.D. - Publications

Affiliations: 
2010 Materials Science University of Southern California, Los Angeles, CA, United States 
Area:
Materials Science Engineering

21 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2017 Yang C, Manohar AK, Narayanan SR. A High-Performance Sintered Iron Electrode for Rechargeable Alkaline Batteries to Enable Large-Scale Energy Storage Journal of the Electrochemical Society. 164: A418-A429. DOI: 10.1149/2.1161702Jes  0.385
2016 Manohar AK, Kim KM, Plichta E, Hendrickson M, Rawlings S, Narayanan SR. A high efficiency iron-chloride redox flow battery for large-scale energy storage Journal of the Electrochemical Society. 163: A5118-A5125. DOI: 10.1149/2.0161601Jes  0.305
2015 Narayan SR, Manohar AK, Mukerjee S. Bi-functional oxygen electrodes challenges and prospects Electrochemical Society Interface. 24: 65-69. DOI: 10.1149/2.F06152If  0.463
2015 Manohar AK, Yang C, Narayanan SR. The role of sulfide additives in achieving long cycle life rechargeable iron electrodes in alkaline batteries Journal of the Electrochemical Society. 162: A1864-A1872. DOI: 10.1149/2.0741509Jes  0.381
2015 Malkhandi S, Trinh P, Manohar AK, Manivannan A, Balasubramanian M, Prakash GKS, Narayanan SR. Design insights for tuning the electrocatalytic activity of perovskite oxides for the oxygen evolution reaction Journal of Physical Chemistry C. 119: 8004-8013. DOI: 10.1021/Jp512722X  0.343
2014 Yang B, Malkhandi S, Manohar AK, Surya Prakash GK, Narayanan SR. Organo-sulfur molecules enable iron-based battery electrodes to meet the challenges of large-scale electrical energy storage Energy and Environmental Science. 7: 2753-2763. DOI: 10.1039/C4Ee01454E  0.441
2014 Manohar AK, Narayanan SR. Efficient Generation of Electricity from Methane using High Temperature Fuel Cells - Status, Challenges and Prospects Israel Journal of Chemistry. 54: 1443-1450. DOI: 10.1002/Ijch.201400093  0.398
2013 Malkhandi S, Yang B, Manohar AK, Prakash GK, Narayanan SR. Self-assembled monolayers of n-alkanethiols suppress hydrogen evolution and increase the efficiency of rechargeable iron battery electrodes. Journal of the American Chemical Society. 135: 347-53. PMID 23237487 DOI: 10.1021/Ja3095119  0.415
2013 Malkhandi S, Trinh P, Manohar AK, Jayachandrababu KC, Kindler A, Surya Prakash GK, Narayanan SR. Electrocatalytic activity of transition metal oxide-carbon composites for oxygen reduction in alkaline batteries and fuel cells Journal of the Electrochemical Society. 160: F943-F952. DOI: 10.1149/2.109308Jes  0.349
2013 Malkhandi S, Trinh P, Manohar AK, Jayachandrababu KC, Kindler A, Surya Prakash GK, Narayanan SR. Erratum: Electrocatalytic Activity of Transition Metal Oxide-Carbon Composites for Oxygen Reduction in Alkaline Batteries and Fuel Cells [J. Electrochem. Soc., 160, F943 (2013)] Journal of the Electrochemical Society. 160: X11-X11. DOI: 10.1149/2.071309Jes  0.363
2013 Manohar AK, Yang C, Malkhandi S, Prakash GKS, Narayanan SR. Enhancing the performance of the rechargeable iron electrode in alkaline batteries with bismuth oxide and iron sulfide additives Journal of the Electrochemical Society. 160: A2078-A2084. DOI: 10.1149/2.066311Jes  0.415
2012 Malkhandi S, Yang B, Manohar AK, Manivannan A, Prakash GK, Narayanan SR. Electrocatalytic Properties of Nanocrystalline Calcium-Doped Lanthanum Cobalt Oxide for Bifunctional Oxygen Electrodes. The Journal of Physical Chemistry Letters. 3: 967-72. PMID 26286557 DOI: 10.1021/Jz300181A  0.329
2012 Huang Y, He Z, Kan J, Manohar AK, Nealson KH, Mansfeld F. Electricity generation from a floating microbial fuel cell. Bioresource Technology. 114: 308-13. PMID 22446049 DOI: 10.1016/J.Biortech.2012.02.142  0.653
2012 Manohar AK, Malkhandi S, Yang B, Yang C, Surya Prakash GK, Narayanan SR. A High-Performance Rechargeable Iron Electrode for Large-Scale Battery-Based Energy Storage Journal of the Electrochemical Society. 159: A1209-A1214. DOI: 10.1149/2.034208Jes  0.395
2012 Manohar AK, Yang C, Malkhandi S, Yang B, Prakash GKS, Narayanan SR. Understanding the factors affecting the formation of carbonyl iron electrodes in rechargeable alkaline iron batteries Journal of the Electrochemical Society. 159: A2148-A2155. DOI: 10.1149/2.021301Jes  0.341
2012 Narayanan SR, Prakash GKS, Manohar A, Yang B, Malkhandi S, Kindler A. Materials challenges and technical approaches for realizing inexpensive and robust iron-air batteries for large-scale energy storage Solid State Ionics. 216: 105-109. DOI: 10.1016/J.Ssi.2011.12.002  0.326
2011 Yang B, Manohar A, Prakash GK, Chen W, Narayanan SR. Anhydrous proton-conducting membrane based on poly-2-vinylpyridinium dihydrogenphosphate for electrochemical applications. The Journal of Physical Chemistry. B. 115: 14462-8. PMID 22029863 DOI: 10.1021/Jp206774C  0.347
2009 Manohar AK, Mansfeld F. The internal resistance of a microbial fuel cell and its dependence on cell design and operating conditions Electrochimica Acta. 54: 1664-1670. DOI: 10.1016/J.Electacta.2008.06.047  0.668
2008 He Z, Huang Y, Manohar AK, Mansfeld F. Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell. Bioelectrochemistry (Amsterdam, Netherlands). 74: 78-82. PMID 18774345 DOI: 10.1016/J.Bioelechem.2008.07.007  0.629
2008 Manohar AK, Bretschger O, Nealson KH, Mansfeld F. The use of electrochemical impedance spectroscopy (EIS) in the evaluation of the electrochemical properties of a microbial fuel cell. Bioelectrochemistry (Amsterdam, Netherlands). 72: 149-54. PMID 18294928 DOI: 10.1016/J.Bioelechem.2008.01.004  0.68
2008 Manohar AK, Bretschger O, Nealson KH, Mansfeld F. The polarization behavior of the anode in a microbial fuel cell Electrochimica Acta. 53: 3508-3513. DOI: 10.1016/J.Electacta.2007.12.002  0.673
Show low-probability matches.