Mark I. Stockman - Publications

Affiliations: 
Georgia State University, Atlanta, GA, United States 
Area:
Condensed Matter Physics, Optics Physics

170 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2020 Azzam SI, Kildishev AV, Ma RM, Ning CZ, Oulton R, Shalaev VM, Stockman MI, Xu JL, Zhang X. Ten years of spasers and plasmonic nanolasers. Light, Science & Applications. 9: 90. PMID 32509297 DOI: 10.1038/S41377-020-0319-7  0.322
2020 Nematollahi F, Motlagh SAO, Wu J, Ghimire R, Apalkov V, Stockman MI. Topological resonance in Weyl semimetals in a circularly polarized optical pulse Physical Review B. 102. DOI: 10.1103/Physrevb.102.125413  0.344
2020 Wijesekara RT, Gunapala SD, Stockman MI, Premaratne M. Optically controlled quantum thermal gate Physical Review B. 101: 245402. DOI: 10.1103/Physrevb.101.245402  0.305
2020 Motlagh SAO, Zafar AJ, Mitra A, Apalkov V, Stockman MI. Ultrafast strong-field absorption in gapped graphene Physical Review B. 101. DOI: 10.1103/Physrevb.101.165433  0.395
2020 Devi A, Gunapala SD, Stockman MI, Premaratne M. Nonequilibrium cavity QED model accounting for dipole-dipole interaction in strong-, ultrastrong-, and deep-strong-coupling regimes Physical Review A. 102: 13701. DOI: 10.1103/Physreva.102.013701  0.364
2019 Gettapola K, Hapuarachchi H, Stockman MI, Premaratne M. Control of quantum emitter-plasmon strong coupling and energy transport with external electrostatic fields. Journal of Physics. Condensed Matter : An Institute of Physics Journal. PMID 31770745 DOI: 10.1088/1361-648X/Ab5Bd3  0.44
2019 Oliaei Motlagh SA, Nematollahi F, Mitra A, Zafar AJ, Apalkov V, Stockman MI. Ultrafast optical currents in gapped graphene. Journal of Physics. Condensed Matter : An Institute of Physics Journal. PMID 31634884 DOI: 10.1088/1361-648X/Ab4Fc7  0.32
2019 Nematollahi F, Motlagh SAO, Apalkov V, Stockman MI. Weyl semimetals in ultrafast laser fields Physical Review B. 99: 245409. DOI: 10.1103/Physrevb.99.245409  0.326
2019 Gamacharige DL, Gunapala SD, Stockman MI, Premaratne M. Significance of the nonlocal optical response of metal nanoparticles in describing the operation of plasmonic lasers Physical Review B. 99: 115405. DOI: 10.1103/Physrevb.99.115405  0.355
2019 Oliaei Motlagh SA, Nematollahi F, Apalkov V, Stockman MI. Topological resonance and single-optical-cycle valley polarization in gapped graphene Physical Review B. 100. DOI: 10.1103/Physrevb.100.115431  0.304
2018 Senevirathne V, Hapuarachchi HP, Mallawaarachchi S, Gunapala SD, Stockman MI, Premaratne M. Scattering characteristics of an exciton-plasmon nanohybrid made by coupling a monolayer graphene nanoflake to a carbon nanotube. Journal of Physics. Condensed Matter : An Institute of Physics Journal. PMID 30540985 DOI: 10.1088/1361-648X/Aaf845  0.361
2018 Stockman MI. Solids in Ultrafast Strong Laser Fields: Optical Control of Electronic State Frontiers in Optics. DOI: 10.1364/Fio.2018.Fm3G.1  0.442
2018 Motlagh SAO, Wu J, Apalkov V, Stockman MI. Fundamentally fastest optical processes at the surface of a topological insulator Physical Review B. 98: 125410. DOI: 10.1103/Physrevb.98.125410  0.396
2018 Hapuarachchi H, Gunapala SD, Bao Q, Stockman MI, Premaratne M. Exciton behavior under the influence of metal nanoparticle near fields: Significance of nonlocal effects Physical Review B. 98: 115430. DOI: 10.1103/Physrevb.98.115430  0.376
2018 Motlagh SAO, Wu J, Apalkov V, Stockman MI. Femtosecond valley polarization and topological resonances in transition metal dichalcogenides Physical Review B. 98: 81406. DOI: 10.1103/Physrevb.98.081406  0.385
2018 Paudel HP, Apalkov V, Sun X, Stockman MI. Plasmon-induced hot carrier transfer to the surface of three-dimensional topological insulators Physical Review B. 98: 75428. DOI: 10.1103/Physrevb.98.075428  0.332
2018 Nematollahi F, Apalkov V, Stockman MI. Phosphorene in ultrafast laser field Physical Review B. 97: 35407. DOI: 10.1103/Physrevb.97.035407  0.323
2018 Stockman MI, Kneipp K, Bozhevolnyi SI, Saha S, Dutta A, Ndukaife J, Kinsey N, Reddy H, Guler U, Shalaev VM, Boltasseva A, Gholipour B, Krishnamoorthy HNS, MacDonald KF, Soci C, et al. Roadmap on plasmonics Journal of Optics. 20: 043001. DOI: 10.1088/2040-8986/Aaa114  0.457
2017 Li DB, Sun XJ, Jia YP, Stockman MI, Paudel HP, Song H, Jiang H, Li ZM. Direct observation of localized surface plasmon field enhancement by Kelvin probe force microscopy. Light, Science & Applications. 6: e17038. PMID 30167283 DOI: 10.1038/Lsa.2017.38  0.343
2017 Liu B, Zhu W, Gunapala SD, Stockman MI, Premaratne M. Open Resonator Electric Spaser. Acs Nano. PMID 29087690 DOI: 10.1021/Acsnano.7B06735  0.366
2017 Babicheva VE, Gamage S, Stockman MI, Abate Y. Near-field edge fringes at sharp material boundaries. Optics Express. 25: 23935-23944. PMID 29041343 DOI: 10.1364/Oe.25.023935  0.411
2017 Galanzha EI, Weingold R, Nedosekin DA, Sarimollaoglu M, Nolan J, Harrington W, Kuchyanov AS, Parkhomenko RG, Watanabe F, Nima Z, Biris AS, Plekhanov AI, Stockman MI, Zharov VP. Spaser as a biological probe. Nature Communications. 8: 15528. PMID 28593987 DOI: 10.1038/Ncomms15528  0.336
2017 Premaratne M, Stockman MI. Theory and technology of SPASERs Advances in Optics and Photonics. 9: 79-128. DOI: 10.1364/Aop.9.000079  0.332
2017 Stockman MI. Nanosystems in ultrafast and superstrong fields: attosecond phenomena (Conference Presentation) Proceedings of Spie. 10102: 1010206. DOI: 10.1117/12.2256061  0.384
2017 Schotz J, Forg B, Forster M, Okell WA, Stockman MI, Krausz F, Hommelhoff P, Kling MF. Reconstruction of Nanoscale Near Fields by Attosecond Streaking Ieee Journal of Selected Topics in Quantum Electronics. 23: 77-87. DOI: 10.1109/Jstqe.2016.2625046  0.416
2017 Wismer MS, Stockman MI, Yakovlev VS. Ultrafast optical Faraday effect in transparent solids Physical Review B. 96: 224301. DOI: 10.1103/Physrevb.96.224301  0.398
2017 Kelardeh HK, Apalkov V, Stockman MI. Graphene superlattices in strong circularly polarized fields: Chirality, Berry phase, and attosecond dynamics Physical Review B. 96: 75409. DOI: 10.1103/Physrevb.96.075409  0.316
2016 Abate Y, Gamage S, Li Z, Babicheva V, Javani MH, Wang H, Cronin SB, Stockman MI. Nanoscopy reveals surface-metallic black phosphorus. Light, Science & Applications. 5: e16162. PMID 30167125 DOI: 10.1038/Lsa.2016.162  0.399
2016 Javani MH, Stockman MI. Real and Imaginary Properties of Epsilon-Near-Zero Materials. Physical Review Letters. 117: 107404. PMID 27636495 DOI: 10.1103/Physrevlett.117.107404  0.397
2016 Förg B, Schötz J, Süßmann F, Förster M, Krüger M, Ahn B, Okell WA, Wintersperger K, Zherebtsov S, Guggenmos A, Pervak V, Kessel A, Trushin SA, Azzeer AM, Stockman MI, et al. Attosecond nanoscale near-field sampling. Nature Communications. 7: 11717. PMID 27241851 DOI: 10.1038/Ncomms11717  0.423
2016 Wismer MS, Kruchinin SY, Ciappina M, Stockman MI, Yakovlev VS. Strong-Field Resonant Dynamics in Semiconductors. Physical Review Letters. 116: 197401. PMID 27232043 DOI: 10.1103/Physrevlett.116.197401  0.396
2016 Kwon O, Paasch-Colberg T, Apalkov V, Kim BK, Kim JJ, Stockman MI, Kim D. Semimetallization of dielectrics in strong optical fields. Scientific Reports. 6: 21272. PMID 26888147 DOI: 10.1038/Srep21272  0.44
2016 Kwon O, Apalkov V, Stockman MI, Kim D. Universality of optical-field-induced semimetallization in dielectrics Frontiers in Optics. DOI: 10.1364/Fio.2016.Jth2A.103  0.392
2016 Stockman MI. Attosecond nanoscale physics of solids in strong ultrafast optical fields(Conference Presentation) Proceedings of Spie. 9918: 991815. DOI: 10.1117/12.2241269  0.392
2016 Kelardeh HK, Apalkov V, Stockman MI. Graphene under a few-cycle circularly polarized optical field: ultrafast interferometry and Berry phase manifestation Proceedings of Spie. 9932: 9. DOI: 10.1117/12.2236247  0.387
2016 Koochaki Kelardeh H, Apalkov V, Stockman MI. Buckled graphene-like materials in ultrashort and strong optical fields Proceedings of Spie - the International Society For Optical Engineering. 9746. DOI: 10.1117/12.2209419  0.426
2016 Kelardeh HK, Stockman MI, Apalkov V. Buckled Dirac materials in ultrashort and strong optical field: Coherent control and reversibility modulation Ieee Transactions On Nanotechnology. 15: 51-59. DOI: 10.1109/Tnano.2015.2496227  0.404
2016 Kirakosyan AS, Stockman MI, Shahbazyan TV. Surface plasmon lifetime in metal nanoshells Physical Review B. 94: 155429. DOI: 10.1103/Physrevb.94.155429  0.439
2016 Kelardeh HK, Apalkov V, Stockman MI. Attosecond strong-field interferometry in graphene: Chirality, singularity, and Berry phase Physical Review B - Condensed Matter and Materials Physics. 93. DOI: 10.1103/Physrevb.93.155434  0.395
2016 Paudel HP, Apalkov V, Stockman MI. Three-dimensional topological insulator based nanospaser Physical Review B - Condensed Matter and Materials Physics. 93. DOI: 10.1103/Physrevb.93.155105  0.418
2015 Yakovlev VS, Stockman MI, Krausz F, Baum P. Atomic-scale diffractive imaging of sub-cycle electron dynamics in condensed matter. Scientific Reports. 5: 14581. PMID 26412407 DOI: 10.1038/Srep14581  0.306
2015 Abate Y, Marvel RE, Ziegler JI, Gamage S, Javani MH, Stockman MI, Haglund RF. Control of plasmonic nanoantennas by reversible metal-insulator transition. Scientific Reports. 5: 13997. PMID 26358623 DOI: 10.1038/Srep13997  0.446
2015 Stockman MI. Transient Nonlinear Optics of Solids in Extremely High Fields Nonlinear Optics. DOI: 10.1364/Nlo.2015.Nth1A.5  0.428
2015 Kelardeh HK, Apalkov V, Stockman MI. Ultrafast field control of symmetry, reciprocity, and reversibility in buckled graphene-like materials Physical Review B - Condensed Matter and Materials Physics. 92. DOI: 10.1103/Physrevb.92.045413  0.423
2015 Kelardeh HK, Apalkov V, Stockman MI. Graphene in ultrafast and superstrong laser fields Physical Review B - Condensed Matter and Materials Physics. 91. DOI: 10.1103/Physrevb.91.045439  0.431
2014 Higuchi T, Stockman MI, Hommelhoff P. Strong-field perspective on high-harmonic radiation from bulk solids. Physical Review Letters. 113: 213901. PMID 25479494 DOI: 10.1103/Physrevlett.113.213901  0.389
2014 Lu YJ, Wang CY, Kim J, Chen HY, Lu MY, Chen YC, Chang WH, Chen LJ, Stockman MI, Shih CK, Gwo S. All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing. Nano Letters. 14: 4381-8. PMID 25029207 DOI: 10.1021/Nl501273U  0.355
2014 Schiffrin A, Paasch-Colberg T, Karpowicz N, Apalkov V, Gerster D, Mühlbrandt S, Korbman M, Reichert J, Schultze M, Holzner S, Barth JV, Kienberger R, Ernstorfer R, Yakovlev VS, Stockman MI, et al. Addendum: Optical-field-induced current in dielectrics. Nature. 507: 386-7. PMID 24647001 DOI: 10.1038/Nature13077  0.381
2014 Kelardeh HK, Apalkov V, Stockman MI. Wannier-Stark states of graphene in strong electric field Physical Review B - Condensed Matter and Materials Physics. 90. DOI: 10.1103/Physrevb.90.085313  0.394
2014 Zhu W, Premaratne M, Gunapala SD, Agrawal GP, Stockman MI. Quasi-static analysis of controllable optical cross-sections of a layered nanoparticle with a sandwiched gain layer Journal of Optics (United Kingdom). 16. DOI: 10.1088/2040-8978/16/7/075003  0.305
2014 Ghimire S, Ndabashimiye G, Dichiara AD, Sistrunk E, Stockman MI, Agostini P, Dimauro LF, Reis DA. Strong-field and attosecond physics in solids Journal of Physics B: Atomic, Molecular and Optical Physics. 47. DOI: 10.1088/0953-4075/47/20/204030  0.398
2014 Stockman M. Plasmonic lasers: On the fast track Nature Physics. 10: 799-800. DOI: 10.1038/Nphys3127  0.327
2014 Krausz F, Stockman MI. Attosecond metrology: from electron capture to future signal processing Nature Photonics. 8: 205-213. DOI: 10.1038/Nphoton.2014.28  0.311
2014 Apalkov V, Stockman MI. Proposed graphene nanospaser Light: Science and Applications. 3. DOI: 10.1038/Lsa.2014.72  0.342
2013 Li D, Stockman MI. Electric spaser in the extreme quantum limit. Physical Review Letters. 110: 106803. PMID 23521278 DOI: 10.1103/Physrevlett.110.106803  0.355
2013 Schiffrin A, Paasch-Colberg T, Karpowicz N, Apalkov V, Gerster D, Mühlbrandt S, Korbman M, Reichert J, Schultze M, Holzner S, Barth JV, Kienberger R, Ernstorfer R, Yakovlev VS, Stockman MI, et al. Optical-field-induced current in dielectrics. Nature. 493: 70-4. PMID 23222521 DOI: 10.1038/Nature11567  0.39
2013 Schultze M, Bothschafter EM, Sommer A, Holzner S, Schweinberger W, Fiess M, Hofstetter M, Kienberger R, Apalkov V, Yakovlev VS, Stockman MI, Krausz F. Controlling dielectrics with the electric field of light. Nature. 493: 75-8. PMID 23222519 DOI: 10.1038/Nature11720  0.446
2013 Apalkov V, Stockman MI. Metal nanofilm in strong ultrafast optical fields Physical Review B - Condensed Matter and Materials Physics. 88. DOI: 10.1103/Physrevb.88.245438  0.467
2013 Giugni A, Torre B, Toma A, Francardi M, Malerba M, Alabastri A, Proietti Zaccaria R, Stockman MI, Di Fabrizio E. Hot-electron nanoscopy using adiabatic compression of surface plasmons Nature Nanotechnology. 8: 845-852. DOI: 10.1038/Nnano.2013.207  0.365
2013 Stockman MI. Lasing spaser in two-dimensional plasmonic crystals Npg Asia Materials. 5. DOI: 10.1038/Am.2013.78  0.353
2013 Hommelhoff P, Kling MF, Stockman MI. Ultrafast phenomena on the nanoscale Annalen Der Physik. 525. DOI: 10.1002/Andp.201300709  0.354
2012 Stockman MI. Spasing and amplification in plasmonic nanosystems International Conference On Optical Mems and Nanophotonics. 35-36. DOI: 10.1109/OMEMS.2012.6318789  0.397
2012 Apalkov V, Stockman MI. Theory of dielectric nanofilms in strong ultrafast optical fields Physical Review B - Condensed Matter and Materials Physics. 86. DOI: 10.1103/Physrevb.86.165118  0.422
2012 Stockman MI. Solids in ultrafast and strong optical fields: New phenomena Aip Conference Proceedings. 1475: 36-37. DOI: 10.1063/1.4750087  0.387
2012 Chew SH, Sümann F, Späth C, Wirth A, Schmidt J, Zherebtsov S, Guggenmos A, Oelsner A, Weber N, Kapaldo J, Gliserin A, Stockman MI, Kling MF, Kleineberg U. Time-of-flight-photoelectron emission microscopy on plasmonic structures using attosecond extreme ultraviolet pulses Applied Physics Letters. 100. DOI: 10.1063/1.3670324  0.354
2011 Stockman MI. Nanoplasmonics: past, present, and glimpse into future. Optics Express. 19: 22029-106. PMID 22109053 DOI: 10.1364/Oe.19.022029  0.417
2011 Durach M, Rusina A, Kling MF, Stockman MI. Predicted ultrafast dynamic metallization of dielectric nanofilms by strong single-cycle optical fields. Physical Review Letters. 107: 086602. PMID 21929186 DOI: 10.1103/Physrevlett.107.086602  0.801
2011 Stockman M. Ultrafast and Strong Fields in Nanooptics Nonlinear Optics. DOI: 10.1364/Nlo.2011.Nthd3  0.373
2011 Stockman MI. Erratum: Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides [Phys. Rev. Lett. 93, 137404 (2004)] Physical Review Letters. 106: 19901. DOI: 10.1103/Physrevlett.106.019901  0.361
2011 Stebbings SL, Süßmann F, Yang YY, Scrinzi A, Durach M, Rusina A, Stockman MI, Kling MF. Generation of isolated attosecond extreme ultraviolet pulses employing nanoplasmonic field enhancement: Optimization of coupled ellipsoids New Journal of Physics. 13. DOI: 10.1088/1367-2630/13/7/073010  0.799
2011 Zherebtsov S, Fennel T, Plenge J, Antonsson E, Znakovskaya I, Wirth A, Herrwerth O, Sümann F, Peltz C, Ahmad I, Trushin SA, Pervak V, Karsch S, Vrakking MJJ, Langer B, ... ... Stockman MI, et al. Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields Nature Physics. 7: 656-662. DOI: 10.1038/Nphys1983  0.424
2011 Park IY, Kim S, Choi J, Lee DH, Kim YJ, Kling MF, Stockman MI, Kim SW. Plasmonic generation of ultrashort extreme-ultraviolet light pulses Nature Photonics. 5: 677-681. DOI: 10.1038/Nphoton.2011.258  0.427
2010 Durach M, Rusina A, Kling MF, Stockman MI. Metallization of nanofilms in strong adiabatic electric fields. Physical Review Letters. 105: 086803. PMID 20868124 DOI: 10.1103/Physrevlett.105.086803  0.802
2010 Utikal T, Stockman MI, Heberle AP, Lippitz M, Giessen H. All-optical control of the ultrafast dynamics of a hybrid plasmonic system. Physical Review Letters. 104: 113903. PMID 20366478 DOI: 10.1103/Physrevlett.104.113903  0.386
2010 Stebbings SL, Yang YY, Süßmann F, Graf R, Apolonskiy A, Weber-Bargioni A, Durach M, Stockman MI, Scrinzi A, Krausz F, Kling MF. Probing ultrafast nano-localized plasmonic fields via XUV light generation Proceedings of Spie - the International Society For Optical Engineering. 7757. DOI: 10.1117/12.860700  0.761
2010 Rusina A, Durach M, Stockman MI. Theory of spoof plasmons in real metals Optics Infobase Conference Papers. DOI: 10.1117/12.859904  0.788
2010 Stockman MI. A fluctuating fractal nanoworld Physics. 3: 90. DOI: 10.1103/Physics.3.90  0.371
2010 Stockman MI. The spaser as a nanoscale quantum generator and ultrafast amplifier Journal of Optics a: Pure and Applied Optics. 12. DOI: 10.1088/2040-8978/12/2/024004  0.46
2010 Rusina A, Durach M, Stockman MI. Theory of spoof plasmons in real metals Applied Physics a: Materials Science and Processing. 100: 375-378. DOI: 10.1007/s00339-010-5866-y  0.798
2009 Lin J, Weber N, Wirth A, Chew SH, Escher M, Merkel M, Kling MF, Stockman MI, Krausz F, Kleineberg U. Time of flight-photoemission electron microscope for ultrahigh spatiotemporal probing of nanoplasmonic optical fields. Journal of Physics. Condensed Matter : An Institute of Physics Journal. 21: 314005. PMID 21828566 DOI: 10.1088/0953-8984/21/31/314005  0.443
2009 Durach M, Rusina A, Stockman MI. Giant surface-plasmon-induced drag effect in metal nanowires. Physical Review Letters. 103: 186801. PMID 19905822 DOI: 10.1103/Physrevlett.103.186801  0.804
2009 Boardman A, Brongersma M, Stockman M, Wegener M. Plasmonics and Metamaterials: Introduction Journal of the Optical Society of America B-Optical Physics. 26. DOI: 10.1364/Josab.26.000Pm1  0.377
2009 Durach M, Rusina A, Stockman MI. Giant surface plasmon induced drag effect (SPIDEr) in metal nanowires Proceedings of Spie - the International Society For Optical Engineering. 7394. DOI: 10.1117/12.825742  0.803
2009 MacDonald KF, Sámson ZL, Stockman MI, Zheludev NI. Ultrafast active plasmonics Nature Photonics. 3: 55-58. DOI: 10.1038/Nphoton.2008.249  0.473
2008 Rusina A, Durach M, Nelson KA, Stockman MI. Nanoconcentration of terahertz radiation in plasmonic waveguides. Optics Express. 16: 18576-89. PMID 19581943 DOI: 10.1117/12.859910  0.774
2008 Kneipp J, Li X, Sherwood M, Panne U, Kneipp H, Stockman MI, Kneipp K. Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing. Analytical Chemistry. 80: 4247-51. PMID 18439029 DOI: 10.1021/Ac8002215  0.399
2008 Durach M, Rusina A, Klimov VI, Stockman MI. Nanoplasmonic renormalization and enhancement of Coulomb interactions New Journal of Physics. 10. DOI: 10.1117/12.796886  0.779
2008 Li X, Stockman MI. Highly efficient spatiotemporal coherent control in nanoplasmonics on a nanometer-femtosecond scale by time reversal Physical Review B - Condensed Matter and Materials Physics. 77. DOI: 10.1103/Physrevb.77.195109  0.406
2008 Dai J, Ajko F, Tsukerman I, Stockman MI. Electrodynamic effects in plasmonic nanolenses Physical Review B - Condensed Matter and Materials Physics. 77. DOI: 10.1103/Physrevb.77.115419  0.42
2008 Stockman MI. Ultrafast nanoplasmonics under coherent control New Journal of Physics. 10. DOI: 10.1088/1367-2630/10/2/025031  0.459
2008 Gramotnev DK, Vogel MW, Stockman MI. Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods Journal of Applied Physics. 104. DOI: 10.1063/1.2963699  0.373
2007 Durach M, Rusina A, Stockman MI, Nelson K. Toward full spatiotemporal control on the nanoscale. Nano Letters. 7: 3145-9. PMID 17727301 DOI: 10.1021/Nl071718G  0.795
2007 Stockman MI. Full coherent control on nanoscale Optics Infobase Conference Papers. DOI: 10.1364/Fio.2007.Fthi2  0.354
2007 Stockman MI, Kling MF, Kleineberg U, Krausz F. Attosecond nanoplasmonic-field microscope Nature Photonics. 1: 539-544. DOI: 10.1038/Nphoton.2007.169  0.455
2007 Hewageegana P, Stockman MI. Plasmonic enhancing nanoantennas for photodetection Infrared Physics and Technology. 50: 177-181. DOI: 10.1016/J.Infrared.2006.10.032  0.387
2007 Stockman MI, Hewageegana P. Absolute phase effect in ultrafast optical responses of metal nanostructures Applied Physics a: Materials Science and Processing. 89: 247-250. DOI: 10.1007/S00339-007-4105-7  0.463
2006 Stockman MI. Slow propagation, anomalous absorption, and total external reflection of surface plasmon polaritons in nanolayer systems. Nano Letters. 6: 2604-8. PMID 17090099 DOI: 10.1021/Nl062082G  0.375
2006 Bashevoy MV, Jonsson F, Krasavin AV, Zheludev NI, Chen Y, Stockman MI. Generation of traveling surface plasmon waves by free-electron impact. Nano Letters. 6: 1113-5. PMID 16771563 DOI: 10.1021/Nl060941V  0.365
2006 Stockman M, Li K, Bergman D, Brasselet S, Zyss J. Octupolar metal nanoparticles as coherently controlled nanomotors and second harmonic generators Proceedings of Spie. 6323: 632312. DOI: 10.1117/12.678876  0.442
2006 Zheludev N, Stockman M, Zayats A. Breeding new science by coupling photons with `nano' Journal of Optics. 8. DOI: 10.1088/1464-4258/8/4/E01  0.426
2006 Stockman MI, Li K, Brasselet S, Zyss J. Octupolar metal nanoparticles as optically driven, coherently controlled nanorotors Chemical Physics Letters. 433: 130-135. DOI: 10.1016/J.Cplett.2006.11.015  0.448
2005 Stockman MI, Hewageegana P. Nanolocalized nonlinear electron photoemission under coherent control. Nano Letters. 5: 2325-9. PMID 16277477 DOI: 10.1021/Nl051895M  0.378
2005 Larkin IA, Stockman MI. Imperfect perfect lens. Nano Letters. 5: 339-43. PMID 15794622 DOI: 10.1021/Nl047957A  0.386
2005 Stockman MI. Ultrafast, nonlinear, and active nanoplasmonics Proceedings of Spie - the International Society For Optical Engineering. 5924: 1-12. DOI: 10.1117/12.617598  0.459
2005 Li K, Stockman MI, Bergman DJ. Enhanced second harmonic generation in a self-similar chain of metal nanospheres Physical Review B - Condensed Matter and Materials Physics. 72. DOI: 10.1103/Physrevb.72.153401  0.425
2005 Li K, Li X, Stockman MI, Bergman DJ. Surface plasmon amplification by stimulated emission in nanolenses Physical Review B - Condensed Matter and Materials Physics. 71. DOI: 10.1103/Physrevb.71.115409  0.443
2005 Stockman M, Zayats A, Zheludev N. Topical issue on the fundamental aspects of nanophotonics Journal of Optics. 7. DOI: 10.1088/1464-4258/7/4/M01  0.389
2005 Gaier LN, Lein M, Stockman MI, Yudin GL, Corkum PB, Ivanov MY, Knight PL. Hole-assisted energy deposition in dielectrics and clusters in the multiphoton regime Journal of Modern Optics. 52: 1019-1030. DOI: 10.1080/09500340500067174  0.385
2005 Stockman MI. Giant fluctuations of second harmonic generation on nanostructured surfaces Chemical Physics. 318: 156-162. DOI: 10.1016/J.Chemphys.2005.06.020  0.417
2005 Stockman MI. Adiabatic energy concentration in graded nanoplasmonic waveguides Quantum Electronics and Laser Science Conference (Qels). 1: 145-147.  0.333
2004 Stockman MI. Nanofocusing of optical energy in tapered plasmonic waveguides. Physical Review Letters. 93: 137404. PMID 15524758 DOI: 10.1103/Physrevlett.93.137404  0.448
2004 Stockman M. Light-emitting devices: From nano-optics to street lights Nature Materials. 3: 423-424. PMID 15229487 DOI: 10.1038/Nmat1169  0.328
2004 Stockman MI, Bergman DJ, Anceau C, Brasselet S, Zyss J. Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations. Physical Review Letters. 92: 057402. PMID 14995341 DOI: 10.1103/Physrevlett.92.057402  0.457
2004 Stockman MI. Surface plasmon lasers and ultrafast nonlinear nanoplasmonic effects Frontiers in Optics. DOI: 10.1364/Fio.2004.Fths4  0.462
2004 Stockman MI. Delivering energy to nanoscale: Rapid adiabatic transformation, concentration, and stopping of radiation in nanooptics Proceedings of Spie - the International Society For Optical Engineering. 5512: 38-49. DOI: 10.1117/12.562685  0.315
2004 Stockman MI, Bergman DJ, Anceau C, Brasselet S, Zyss J. Enhanced second harmonic generation by nanorough surfaces: Nanoscale depolarization, dephasing, correlations, and giant fluctuations Proceedings of Spie - the International Society For Optical Engineering. 5508: 206-215. DOI: 10.1117/12.555737  0.345
2004 Larkin IA, Stockman MI, Achermann M, Klimov VI. Dipolar emitters at nanoscale proximity of metal surfaces: Giant enhancement of relaxation in microscopic theory Physical Review B. 69. DOI: 10.1103/Physrevb.69.121403  0.444
2004 Mikhailovsky AA, Petruska MA, Li K, Stockman MI, Klimov VI. Phase-sensitive spectroscopy of surface plasmons in individual metal nanostructures Physical Review B - Condensed Matter and Materials Physics. 69: 854011-854016. DOI: 10.1103/Physrevb.69.085401  0.449
2004 Stockman MI, Bergman DJ, Kobayashi T. Coherent control of nanoscale localization of ultrafast optical excitation in nanosystems Physical Review B - Condensed Matter and Materials Physics. 69: 542021-5420210. DOI: 10.1103/Physrevb.69.054202  0.47
2004 Gaier LN, Lein M, Stockman MI, Knight PL, Corkum PB, Ivanov MY, Yudin GL. Ultrafast multiphoton forest fires and fractals in clusters and dielectrics Journal of Physics B: Atomic, Molecular and Optical Physics. 37: L57-L67. DOI: 10.1088/0953-4075/37/3/L04  0.323
2004 Nordlander P, Oubre C, Prodan E, Li K, Stockman MI. Plasmon hybridization in nanoparticle dimers Nano Letters. 4: 899-903. DOI: 10.1021/Nl049681C  0.313
2004 Stockman MI, Bergman DJ. SPASER as ultrafast nanoscale phenomenon and device Springer Series in Chemical Physics. 79: 676-678. DOI: 10.1007/3-540-27213-5_206  0.382
2004 Stockman MI, Bergman DJ, Kobayashi T. Coherent control of ultrafast linear and nonlinear optical phenomena in nanostructures Springer Series in Chemical Physics. 79: 673-675. DOI: 10.1007/3-540-27213-5_205  0.387
2004 Bergman DJ, Stockman MI. Can We Make a Nanoscopic Laser? Laser Physics. 14: 409-411.  0.315
2004 Larkin IA, Stockman MI, Achermann M, Klimov VI. Dipolar emitters at nanoscale proximity of metal surfaces: Giant enhancement of relaxation in microscopic theory Physical Review B - Condensed Matter and Materials Physics. 69: 1214031-1214034.  0.301
2003 Li K, Stockman MI, Bergman DJ. Self-similar chain of metal nanospheres as an efficient nanolens. Physical Review Letters. 91: 227402. PMID 14683271 DOI: 10.1103/Physrevlett.91.227402  0.421
2003 Mikhailovsky AA, Petruska MA, Stockman MI, Klimov VI. Broadband near-field interference spectroscopy of metal nanoparticles using a femtosecond white-light continuum. Optics Letters. 28: 1686-8. PMID 13677537 DOI: 10.1364/Ol.28.001686  0.427
2003 Bergman DJ, Stockman MI. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Physical Review Letters. 90: 027402. PMID 12570577 DOI: 10.1103/Physrevlett.90.027402  0.415
2003 Stockman MI, Bergman DJ, Kobayashi T. Coherent Control of Ultrafast Nanoscale Localization of Optical Excitation Energy Proceedings of Spie - the International Society For Optical Engineering. 5221: 182-196. DOI: 10.1117/12.508522  0.367
2003 Stockman MI, Faleev SV, Bergman DJ. Femtosecond energy concentration in nanosystems: Coherent control Physica B: Condensed Matter. 338: 361-365. DOI: 10.1016/J.Physb.2003.08.021  0.739
2003 Stockman MI, Bergman DJ. Quantum nanoplasmonics: Surface plasmon amplification by stimulated emission of radiation (SPASER) Conference On Quantum Electronics and Laser Science (Qels) - Technical Digest Series. 89.  0.342
2003 Stockman MI, Bergman DJ, Kobayashi T. Coherent control of nanoscale localization of ultrafast optical excitation in nanostructures Conference On Quantum Electronics and Laser Science (Qels) - Technical Digest Series. 89.  0.341
2003 Stockman MI, Faleev SV, Bergman DJ. Femtosecond energy concentration in nanosystems coherently controlled by excitation phase Springer Series in Chemical Physics. 71: 496-498.  0.725
2002 Stockman MI, Faleev SV, Bergman DJ. Coherent control of femtosecond energy localization in nanosystems. Physical Review Letters. 88: 067402. PMID 11863849 DOI: 10.1103/Physrevlett.88.067402  0.747
2002 Faleev SV, Stockman MI. Self-consistent random-phase approximation for interacting electrons in quantum wells and intersubband absorption Physical Review B - Condensed Matter and Materials Physics. 66: 853181-8531811. DOI: 10.1103/Physrevb.66.085318  0.699
2002 Stockman MI, Faleev SV, Bergman DJ. Coherently controlled femtosecond energy localization on nanoscale Applied Physics B: Lasers and Optics. 74. DOI: 10.1007/S00340-002-0868-X  0.747
2002 Stockman MI, Faleev SV, Bergman DJ. Femtosecond energy concentration in nanosystems coherently controlled b excitation phase modulation 2002 International Conference On Computational Nanoscience and Nanotechnology - Iccn 2002. 380-382.  0.668
2002 Bergman DJ, Stockman MI, Faleev SV. Anderson localization vs. delocalization of surface plasmons in nanosystems Conference On Quantum Electronics and Laser Science (Qels) - Technical Digest Series. 74: 259-260.  0.678
2001 Stockman MI, Faleev SV, Bergman DJ. Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics? Physical Review Letters. 87: 167401. PMID 11690242 DOI: 10.1103/Physrevlett.87.167401  0.706
2001 Faleev SV, Stockman MI. Self-consistent random-phase approximation for a two-dimensional electron gas at finite temperatures Physical Review B - Condensed Matter and Materials Physics. 63: 1933021-1933024. DOI: 10.1103/Physrevb.63.193302  0.683
2001 Stockman MI. Femtosecond and attosecond giant optical responses and fluctuations in disordered clusters, nanocomposites, and rough surfaces Springer Series in Chemical Physics. 66: 398-400.  0.313
2000 Stockman MI. Femtosecond Optical Responses of Disordered Clusters, Composites, and Rough Surfaces: "The Ninth Wave" Effect Physical Review Letters. 84: 1011-1014. DOI: 10.1103/Physrevlett.84.1011  0.419
2000 Faleev SV, Stockman MI. Self-consistent random-phase approximation for a two-dimensional electron gas: Kadanoff-Baym-Keldysh approach Physical Review B - Condensed Matter and Materials Physics. 62: 16707-16714. DOI: 10.1103/Physrevb.62.16707  0.682
2000 Stockman MI. Giant attosecond fluctuations of local optical fields in disordered nanostructured media Physical Review B - Condensed Matter and Materials Physics. 62: 10494-10497. DOI: 10.1103/Physrevb.62.10494  0.426
1999 Stockman MI, Kurlayev KB, George TF. Linear and nonlinear optical susceptibilities of Maxwell Garnett composites: Dipolar spectral theory Physical Review B - Condensed Matter and Materials Physics. 60: 17071-17083. DOI: 10.1103/Physrevb.60.17071  0.392
1999 Faleev SV, Stockman MI. Light-induced drift in semiconductor heterostructures: Microscopic theory Physical Review B - Condensed Matter and Materials Physics. 59: 7338-7341. DOI: 10.1103/Physrevb.59.7338  0.691
1998 Evans JR, Stockman MI. Turbulence and spatial correlation of currents in quantum chaos Physical Review Letters. 81: 4624-4627. DOI: 10.1103/Physrevlett.81.4624  0.336
1998 Ohtsuki Y, Stockman MI, Pandey LN, George TF. Laser-induced long-lifetime electron tunnelling in biased asymmetric double quantum well Superlattices and Microstructures. 23: 272-282. DOI: 10.1006/Spmi.1996.0158  0.322
1997 Stockman MI. Inhomogeneous eigenmode localization, chaos, and correlations in large disordered clusters Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics. 56: 6494-6507. DOI: 10.1103/Physreve.56.6494  0.303
1997 Muratov LS, Stockman MI, Pandey LN, George TF, Li WJ, McCombe BD, Kaminski JP, Allen SJ, Schaff WJ. Absorption saturation studies of Landau levels in quasi-two-dimensional systems Superlattices and Microstructures. 21. DOI: 10.1006/Spmi.1996.0146  0.338
1995 Stockman MI, Pandey LN, Muratov LS, George TF. Comment on "photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters", Physical Review Letters. 75: 2450. DOI: 10.1103/Physrevlett.75.2450  0.312
1995 Stockman MI, Pandey LN, Muratov LS, George TF. Optical absorption and localization of eigenmodes in disordered clusters Physical Review B. 51: 185-195. DOI: 10.1103/Physrevb.51.185  0.318
1994 Stockman MI, Pandey LN, Muratov LS, George TF. Giant fluctuations of local optical fields in fractal clusters Physical Review Letters. 72: 2486-2489. DOI: 10.1103/Physrevlett.72.2486  0.398
1994 Ohtsuki Y, Pandey LN, Stockman MI, George TF. Laser-induced suppression of electron tunneling in a biased asymmetric double quantum well Physical Review B. 50: 2236-2240. DOI: 10.1103/Physrevb.50.2236  0.32
1994 Stockman M, George T. Photon tunnelling microscope reveals local hot spots Physics World. 7: 27-30. DOI: 10.1088/2058-7058/7/9/27  0.325
1994 Li WJ, McCombe BD, Kaminski JP, Allen SJ, Stockman MI, Muratov LS, Pandey LN, George TF, Schaff WJ. Saturation spectroscopy of hot carriers in coupled double quantum well structures Semiconductor Science and Technology. 9: 630-633. DOI: 10.1088/0268-1242/9/5S/062  0.334
1993 Stockman MI, Pandey LN, Muratov LS, George TF. Intersubband optical bistability induced by resonant tunneling in an asymmetric double quantum well Physical Review B. 48: 10966-10971. DOI: 10.1103/Physrevb.48.10966  0.415
1993 Stockman MI, Pandey LN, Muratov LS, George TF. Possibility of intrinsic optical (far-IR) bistability in an asymmetric double quantum well Physics Letters A. 179: 423-428. DOI: 10.1016/0375-9601(93)90102-6  0.391
1992 Stockman MI, Shalaev VM, Moskovits M, Botet R, George TF. Enhanced Raman scattering by fractal clusters: Scale-invariant theory. Physical Review. B, Condensed Matter. 46: 2821-2830. PMID 10003971 DOI: 10.1103/Physrevb.46.2821  0.321
1992 Stockman MI, Muratov LS, Pandey LN, George TF. Photoinduced Electron Transfer Counter to the Bias Field in Coupled Quantum Wells Mrs Proceedings. 261: 125. DOI: 10.1557/Proc-261-125  0.395
1992 Stockman MI, Muratov LS, George TF. Theory of light-induced drift of electrons in coupled quantum wells Physical Review B. 46: 9595-9602. DOI: 10.1103/Physrevb.46.9595  0.338
1992 Stockman MI, Muratov LS, Pandey LN, George TF. Kinetics of intersubband optical excitation and photoinduced electron transfer in an asymmetric double quantum well Physical Review B. 45: 8550-8561. DOI: 10.1103/Physrevb.45.8550  0.401
1992 Shalaev VM, Stockman MI, Botet R. Resonant excitations and nonlinear optics of fractals Physica a: Statistical Mechanics and Its Applications. 185: 181-186. DOI: 10.1016/0378-4371(92)90454-X  0.354
1992 Stockman MI, Muratov LS, Pandey LN, George TF. Light-induced electron transfer counter to an electric-field force in an asymmetric double quantum well Physics Letters A. 163: 233-238. DOI: 10.1016/0375-9601(92)90415-I  0.388
1991 Stockman MI, George TF, Shalaev VM. Field work and dispersion relations of excitations on fractals Physical Review B. 44: 115-121. DOI: 10.1103/Physrevb.44.115  0.345
1991 Markel VA, Muratov LS, Stockman MI, George TF. Theory and numerical simulation of optical properties of fractal clusters Physical Review B. 43: 8183-8195. DOI: 10.1103/Physrevb.43.8183  0.617
1990 Stockman MI, Pandey LN, George TF. Light-induced drift of quantum-confined electrons in semiconductor heterostructures Physical Review Letters. 65: 3433-3436. DOI: 10.1103/Physrevlett.65.3433  0.363
1990 Butenko AV, Chubakov PA, Danilova YE, Karpov SV, Popov AK, Rautian SG, Safonov VP, Slabko VV, Shalaev VM, Stockman MI. Nonlinear optics of metal fractal clusters Zeitschrift FüR Physik D Atoms, Molecules and Clusters. 17: 283-289. DOI: 10.1007/Bf01437368  0.324
1988 Butenko AV, Shalaev VM, Stockman MI. Fractals: giant impurity nonlinearities in optics of fractal clusters Zeitschrift FüR Physik D Atoms, Molecules and Clusters. 10: 81-92. DOI: 10.1007/Bf01425583  0.451
1988 Shalaev VM, Stockman MI. Fractals: optical susceptibility and giant raman scattering Zeitschrift FüR Physik D Atoms, Molecules and Clusters. 10: 71-79. DOI: 10.1007/Bf01425582  0.307
Show low-probability matches.