Nobutaka Hirokawa - Publications

Affiliations: 
University of Tokyo, Bunkyō-ku, Tōkyō-to, Japan 
Area:
Microtubule Motors

251 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2019 Alsabban AH, Morikawa M, Tanaka Y, Takei Y, Hirokawa N. Kinesin Kif3b mutation reduces NMDAR subunit NR2A trafficking and causes schizophrenia-like phenotypes in mice. The Embo Journal. e101090. PMID 31746486 DOI: 10.15252/embj.2018101090  0.358
2019 Ichinose S, Ogawa T, Jiang X, Hirokawa N. The Spatiotemporal Construction of the Axon Initial Segment via KIF3/KAP3/TRIM46 Transport under MARK2 Signaling. Cell Reports. 28: 2413-2426.e7. PMID 31461655 DOI: 10.1016/j.celrep.2019.07.093  0.419
2018 Shima T, Morikawa M, Kaneshiro J, Kambara T, Kamimura S, Yagi T, Iwamoto H, Uemura S, Shigematsu H, Shirouzu M, Ichimura T, Watanabe TM, Nitta R, Okada Y, Hirokawa N. Kinesin-binding-triggered conformation switching of microtubules contributes to polarized transport. The Journal of Cell Biology. PMID 30297389 DOI: 10.1083/jcb.201711178  0.372
2018 Wang L, Tanaka Y, Wang D, Morikawa M, Zhou R, Homma N, Miyamoto Y, Hirokawa N. The Atypical Kinesin KIF26A Facilitates Termination of Nociceptive Responses by Sequestering Focal Adhesion Kinase. Cell Reports. 24: 2894-2907. PMID 30208315 DOI: 10.1016/j.celrep.2018.05.075  0.406
2018 Xu F, Takahashi H, Tanaka Y, Ichinose S, Niwa S, Wicklund MP, Hirokawa N. KIF1Bβ mutations detected in hereditary neuropathy impair IGF1R transport and axon growth. The Journal of Cell Biology. PMID 30126838 DOI: 10.1083/jcb.201801085  0.398
2018 Morikawa M, Tanaka Y, Cho HS, Yoshihara M, Hirokawa N. The Molecular Motor KIF21B Mediates Synaptic Plasticity and Fear Extinction by Terminating Rac1 Activation. Cell Reports. 23: 3864-3877. PMID 29949770 DOI: 10.1016/j.celrep.2018.05.089  0.378
2018 Homma N, Zhou R, Naseer MI, Chaudhary AG, Al-Qahtani MH, Hirokawa N. KIF2A regulates the development of dentate granule cells and postnatal hippocampal wiring. Elife. 7. PMID 29313800 DOI: 10.7554/eLife.30935  0.39
2017 Ogawa T, Saijo S, Shimizu N, Jiang X, Hirokawa N. Mechanism of Catalytic Microtubule Depolymerization via KIF2-Tubulin Transitional Conformation. Cell Reports. 20: 2626-2638. PMID 28903043 DOI: 10.1016/j.celrep.2017.08.067  0.348
2017 Niwa S, Nakamura F, Tomabechi Y, Aoki M, Shigematsu H, Matsumoto T, Yamagata A, Fukai S, Hirokawa N, Goshima Y, Shirouzu M, Nitta R. Structural basis for CRMP2-induced axonal microtubule formation. Scientific Reports. 7: 10681. PMID 28878401 DOI: 10.1038/s41598-017-11031-4  0.404
2017 Mitsumori K, Takei Y, Hirokawa N. Components of RNA granules affect their localization and dynamics in neuronal dendrites. Molecular Biology of the Cell. PMID 28404748 DOI: 10.1091/mbc.E16-07-0497  0.349
2016 Wang D, Nitta R, Morikawa M, Yajima H, Inoue S, Shigematsu H, Kikkawa M, Hirokawa N. Motility and microtubule depolymerization mechanisms of the Kinesin-8 motor, KIF19A. Elife. 5. PMID 27690357 DOI: 10.7554/eLife.18101  0.394
2016 Niwa S, Lipton DM, Morikawa M, Zhao C, Hirokawa N, Lu H, Shen K. Autoinhibition of a Neuronal Kinesin UNC-104/KIF1A Regulates the Size and Density of Synapses. Cell Reports. PMID 27524618 DOI: 10.1016/J.Celrep.2016.07.043  0.432
2016 Tanaka Y, Niwa S, Dong M, Farkhondeh A, Wang L, Zhou R, Hirokawa N. The Molecular Motor KIF1A Transports the TrkA Neurotrophin Receptor and Is Essential for Sensory Neuron Survival and Function. Neuron. PMID 27263974 DOI: 10.1016/j.neuron.2016.05.002  0.398
2016 Wang D, Nitta R, Morikawa M, Yajima H, Inoue S, Shigematsu H, Kikkawa M, Hirokawa N. Author response: Motility and microtubule depolymerization mechanisms of the Kinesin-8 motor, KIF19A Elife. DOI: 10.7554/Elife.18101.033  0.37
2015 Takei Y, Kikkawa YS, Atapour N, Hensch TK, Hirokawa N. Defects in Synaptic Plasticity, Reduced NMDA-Receptor Transport, and Instability of Postsynaptic Density Proteins in Mice Lacking Microtubule-Associated Protein 1A. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 35: 15539-54. PMID 26609151 DOI: 10.1523/Jneurosci.2671-15.2015  0.392
2015 Ogawa T, Hirokawa N. Microtubule Destabilizer KIF2A Undergoes Distinct Site-Specific Phosphorylation Cascades that Differentially Affect Neuronal Morphogenesis. Cell Reports. 12: 1774-88. PMID 26344760 DOI: 10.1016/j.celrep.2015.08.018  0.335
2015 Ichinose S, Ogawa T, Hirokawa N. Mechanism of Activity-Dependent Cargo Loading via the Phosphorylation of KIF3A by PKA and CaMKIIa. Neuron. 87: 1022-35. PMID 26335646 DOI: 10.1016/j.neuron.2015.08.008  0.322
2015 Hirokawa N. Introduction to the ECR Special Issue on Molecular Motors. Experimental Cell Research. 334: 1. PMID 25814360 DOI: 10.1016/j.yexcr.2015.03.013  0.335
2015 Farkhondeh A, Niwa S, Takei Y, Hirokawa N. Characterizing KIF16B in neurons reveals a novel intramolecular "stalk inhibition" mechanism that regulates its capacity to potentiate the selective somatodendritic localization of early endosomes. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 35: 5067-86. PMID 25810535 DOI: 10.1523/JNEUROSCI.4240-14.2015  0.425
2015 Morikawa M, Yajima H, Nitta R, Inoue S, Ogura T, Sato C, Hirokawa N. X-ray and Cryo-EM structures reveal mutual conformational changes of Kinesin and GTP-state microtubules upon binding. The Embo Journal. 34: 1270-86. PMID 25777528 DOI: 10.15252/embj.201490588  0.372
2015 Hirokawa N, Tanaka Y. Kinesin superfamily proteins (KIFs): Various functions and their relevance for important phenomena in life and diseases. Experimental Cell Research. 334: 16-25. PMID 25724902 DOI: 10.1016/j.yexcr.2015.02.016  0.381
2014 Kanai Y, Wang D, Hirokawa N. KIF13B enhances the endocytosis of LRP1 by recruiting LRP1 to caveolae. The Journal of Cell Biology. 204: 395-408. PMID 24469637 DOI: 10.1083/jcb.201309066  0.344
2014 Hirokawa N. Intracellular transport, molecular motors, KIFs and related diseases Bmc Genomics. 15. DOI: 10.1186/1471-2164-15-S2-O19  0.451
2013 Maor-Nof M, Homma N, Raanan C, Nof A, Hirokawa N, Yaron A. Axonal pruning is actively regulated by the microtubule-destabilizing protein kinesin superfamily protein 2A. Cell Reports. 3: 971-7. PMID 23562155 DOI: 10.1016/J.Celrep.2013.03.005  0.386
2013 Niwa S, Takahashi H, Hirokawa N. β-Tubulin mutations that cause severe neuropathies disrupt axonal transport. The Embo Journal. 32: 1352-64. PMID 23503589 DOI: 10.1038/emboj.2013.59  0.39
2013 Chang Q, Nitta R, Inoue S, Hirokawa N. Structural basis for the ATP-induced isomerization of kinesin. Journal of Molecular Biology. 425: 1869-80. PMID 23500491 DOI: 10.1016/j.jmb.2013.03.004  0.329
2013 Zhou R, Niwa S, Guillaud L, Tong Y, Hirokawa N. A molecular motor, KIF13A, controls anxiety by transporting the serotonin type 1A receptor. Cell Reports. 3: 509-19. PMID 23438369 DOI: 10.1016/J.Celrep.2013.01.014  0.73
2012 Nakajima K, Yin X, Takei Y, Seog DH, Homma N, Hirokawa N. Molecular motor KIF5A is essential for GABA(A) receptor transport, and KIF5A deletion causes epilepsy. Neuron. 76: 945-61. PMID 23217743 DOI: 10.1016/J.Neuron.2012.10.012  0.338
2012 Niwa S, Nakajima K, Miki H, Minato Y, Wang D, Hirokawa N. KIF19A is a microtubule-depolymerizing kinesin for ciliary length control. Developmental Cell. 23: 1167-75. PMID 23168168 DOI: 10.1016/j.devcel.2012.10.016  0.33
2012 Yajima H, Ogura T, Nitta R, Okada Y, Sato C, Hirokawa N. Conformational changes in tubulin in GMPCPP and GDP-taxol microtubules observed by cryoelectron microscopy. The Journal of Cell Biology. 198: 315-22. PMID 22851320 DOI: 10.1083/jcb.201201161  0.369
2012 Yin X, Feng X, Takei Y, Hirokawa N. Regulation of NMDA receptor transport: a KIF17-cargo binding/releasing underlies synaptic plasticity and memory in vivo. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 32: 5486-99. PMID 22514311 DOI: 10.1523/Jneurosci.0718-12.2012  0.349
2012 Kondo M, Takei Y, Hirokawa N. Motor protein KIF1A is essential for hippocampal synaptogenesis and learning enhancement in an enriched environment. Neuron. 73: 743-57. PMID 22365548 DOI: 10.1016/j.neuron.2011.12.020  0.376
2012 Noda Y, Niwa S, Homma N, Fukuda H, Imajo-Ohmi S, Hirokawa N. Phosphatidylinositol 4-phosphate 5-kinase alpha (PIPKα) regulates neuronal microtubule depolymerase kinesin, KIF2A and suppresses elongation of axon branches. Proceedings of the National Academy of Sciences of the United States of America. 109: 1725-30. PMID 22307638 DOI: 10.1073/pnas.1107808109  0.412
2012 Yajima H, Ogura T, Nitta R, Okada Y, Sato C, Hirokawa N. 3H0900 Large Conformational Changes in Tubulin in the GTP- and GDPStates Microtubules Observed by Cryo Electron Microscopy(Cell Biology III:Cytoskeleton & Motility,Oral Presentation) Seibutsu Butsuri. 52: S69. DOI: 10.2142/biophys.52.S69_4  0.3
2011 Hirokawa N. From electron microscopy to molecular cell biology, molecular genetics and structural biology: intracellular transport and kinesin superfamily proteins, KIFs: genes, structure, dynamics and functions. Journal of Electron Microscopy. 60: S63-92. PMID 21844601 DOI: 10.1093/jmicro/dfr051  0.425
2011 Nakata T, Niwa S, Okada Y, Perez F, Hirokawa N. Preferential binding of a kinesin-1 motor to GTP-tubulin-rich microtubules underlies polarized vesicle transport. The Journal of Cell Biology. 194: 245-55. PMID 21768290 DOI: 10.1083/jcb.201104034  0.431
2011 Yin X, Takei Y, Kido MA, Hirokawa N. Molecular motor KIF17 is fundamental for memory and learning via differential support of synaptic NR2A/2B levels. Neuron. 70: 310-25. PMID 21521616 DOI: 10.1016/J.Neures.2011.07.503  0.345
2011 Ueno H, Huang X, Tanaka Y, Hirokawa N. KIF16B/Rab14 molecular motor complex is critical for early embryonic development by transporting FGF receptor. Developmental Cell. 20: 60-71. PMID 21238925 DOI: 10.1016/j.devcel.2010.11.008  0.375
2011 Nakata T, Niwa S, Okada Y, Perez F, Hirokawa N. The kinesin-1 motor protein KIF5 recognizes microtubule lattice structure emanated from GTP-tubulin in axons as directional cue Neuroscience Research. 71: e118. DOI: 10.1016/j.neures.2011.07.502  0.412
2010 Hirokawa N, Niwa S, Tanaka Y. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron. 68: 610-38. PMID 21092854 DOI: 10.1016/j.neuron.2010.09.039  0.424
2010 Terada S, Kinjo M, Aihara M, Takei Y, Hirokawa N. Kinesin-1/Hsc70-dependent mechanism of slow axonal transport and its relation to fast axonal transport. The Embo Journal. 29: 843-54. PMID 20111006 DOI: 10.1038/emboj.2009.389  0.422
2010 Niwa S, Zhou R, Homma N, Takei Y, Hirokawa N. Regulation of enteric nervous system development by a novel Kinesin superfamily protein KIF26A Neuroscience Research. 68: e124-e125. DOI: 10.1016/j.neures.2010.07.2122  0.337
2010 Terada S, Kinjo M, Aihara M, Takei Y, Hirokawa N. Kinesin-1/Hsc70-dependent switching mechanism between slow and fast axonal transport and its relation to optic axonopathy Neuroscience Research. 68: e89. DOI: 10.1016/j.neures.2010.07.159  0.324
2009 Okada Y, Hirokawa N. Observation of nodal cilia movement and measurement of nodal flow. Methods in Cell Biology. 91: 265-85. PMID 20409791 DOI: 10.1016/S0091-679X(08)91014-1  0.321
2009 Hirokawa N, Nitta R, Okada Y. The mechanisms of kinesin motor motility: lessons from the monomeric motor KIF1A. Nature Reviews. Molecular Cell Biology. 10: 877-84. PMID 19935670 DOI: 10.1038/nrm2807  0.392
2009 Zhou R, Niwa S, Homma N, Takei Y, Hirokawa N. KIF26A is an unconventional kinesin and regulates GDNF-Ret signaling in enteric neuronal development. Cell. 139: 802-13. PMID 19914172 DOI: 10.1016/j.cell.2009.10.023  0.378
2009 Hirokawa N, Noda Y, Tanaka Y, Niwa S. Kinesin superfamily motor proteins and intracellular transport. Nature Reviews. Molecular Cell Biology. 10: 682-96. PMID 19773780 DOI: 10.1038/nrm2774  0.438
2009 Terada S, Kinjo M, Aihara M, Takei Y, Hirokawa N. Molecular mechanism of change-over regulation between slow/fast axonal transport Neuroscience Research. 65: S86. DOI: 10.1016/j.neures.2009.09.342  0.355
2008 Niwa S, Tanaka Y, Hirokawa N. KIF1Bbeta- and KIF1A-mediated axonal transport of presynaptic regulator Rab3 occurs in a GTP-dependent manner through DENN/MADD. Nature Cell Biology. 10: 1269-79. PMID 18849981 DOI: 10.1038/ncb1785  0.435
2008 Hirokawa N, Noda Y. Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics. Physiological Reviews. 88: 1089-118. PMID 18626067 DOI: 10.1152/physrev.00023.2007  0.442
2008 Guillaud L, Wong R, Hirokawa N. Disruption of KIF17-Mint1 interaction by CaMKII-dependent phosphorylation: a molecular model of kinesin-cargo release. Nature Cell Biology. 10: 19-29. PMID 18066053 DOI: 10.1038/Ncb1665  0.748
2007 Oda T, Hirokawa N, Kikkawa M. Three-dimensional structures of the flagellar dynein-microtubule complex by cryoelectron microscopy. The Journal of Cell Biology. 177: 243-52. PMID 17438074 DOI: 10.1083/jcb.200609038  0.314
2007 Nakata T, Hirokawa N. Neuronal polarity and the kinesin superfamily proteins. Science's Stke : Signal Transduction Knowledge Environment. 2007: pe6. PMID 17284724 DOI: 10.1126/stke.3722007pe6  0.384
2006 Kikkawa M, Hirokawa N. High-resolution cryo-EM maps show the nucleotide binding pocket of KIF1A in open and closed conformations. The Embo Journal. 25: 4187-94. PMID 16946706 DOI: 10.1038/sj.emboj.7601299  0.362
2006 Hirokawa N. mRNA transport in dendrites: RNA granules, motors, and tracks. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 26: 7139-42. PMID 16822968 DOI: 10.1523/JNEUROSCI.1821-06.2006  0.379
2006 Midorikawa R, Takei Y, Hirokawa N. KIF4 motor regulates activity-dependent neuronal survival by suppressing PARP-1 enzymatic activity. Cell. 125: 371-83. PMID 16630823 DOI: 10.1016/j.cell.2006.02.039  0.358
2005 Miki H, Okada Y, Hirokawa N. Analysis of the kinesin superfamily: insights into structure and function. Trends in Cell Biology. 15: 467-76. PMID 16084724 DOI: 10.1016/j.tcb.2005.07.006  0.323
2005 Chien CL, Lu KS, Lin YS, Hsieh CJ, Hirokawa N. The functional cooperation of MAP1A heavy chain and light chain 2 in the binding of microtubules. Experimental Cell Research. 308: 446-58. PMID 15936015 DOI: 10.1016/J.Yexcr.2005.05.007  0.34
2005 Teng J, Rai T, Tanaka Y, Takei Y, Nakata T, Hirasawa M, Kulkarni AB, Hirokawa N. The KIF3 motor transports N-cadherin and organizes the developing neuroepithelium. Nature Cell Biology. 7: 474-82. PMID 15834408 DOI: 10.1038/ncb1249  0.367
2005 Hirokawa N, Takemura R. Molecular motors and mechanisms of directional transport in neurons. Nature Reviews. Neuroscience. 6: 201-14. PMID 15711600 DOI: 10.1038/nrn1624  0.44
2005 Nitta R, Okada Y, Hirokawa N. 1SB56 Structural mechanism of ATP hydrolysis and coupled conformational changes in kinesin-type motor KIF1A Seibutsu Butsuri. 45: S12. DOI: 10.2142/biophys.45.S12_2  0.323
2004 Hirokawa N, Takemura R. Kinesin superfamily proteins and their various functions and dynamics. Experimental Cell Research. 301: 50-9. PMID 15501445 DOI: 10.1016/j.yexcr.2004.08.010  0.477
2004 Hirokawa N, Takemura R. Molecular motors in neuronal development, intracellular transport and diseases. Current Opinion in Neurobiology. 14: 564-73. PMID 15464889 DOI: 10.1016/j.conb.2004.08.011  0.456
2004 Kanai Y, Dohmae N, Hirokawa N. Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron. 43: 513-25. PMID 15312650 DOI: 10.1016/j.neuron.2004.07.022  0.347
2004 Nitta R, Kikkawa M, Okada Y, Hirokawa N. KIF1A alternately uses two loops to bind microtubules. Science (New York, N.Y.). 305: 678-83. PMID 15286375 DOI: 10.1126/science.1096621  0.345
2004 Mizuno N, Toba S, Edamatsu M, Watai-Nishii J, Hirokawa N, Toyoshima YY, Kikkawa M. Dynein and kinesin share an overlapping microtubule-binding site. The Embo Journal. 23: 2459-67. PMID 15175652 DOI: 10.1038/sj.emboj.7600240  0.392
2004 Oyama F, Kotliarova S, Harada A, Ito M, Miyazaki H, Ueyama Y, Hirokawa N, Nukina N, Ihara Y. Gem GTPase and tau: morphological changes induced by gem GTPase in cho cells are antagonized by tau. The Journal of Biological Chemistry. 279: 27272-7. PMID 15087445 DOI: 10.1074/Jbc.M401634200  0.375
2004 Ogawa T, Nitta R, Okada Y, Hirokawa N. A common mechanism for microtubule destabilizers-M type kinesins stabilize curling of the protofilament using the class-specific neck and loops. Cell. 116: 591-602. PMID 14980225 DOI: 10.1016/S0092-8674(04)00129-1  0.356
2003 Hirokawa N, Takemura R. Biochemical and molecular characterization of diseases linked to motor proteins. Trends in Biochemical Sciences. 28: 558-65. PMID 14559185 DOI: 10.1016/j.tibs.2003.08.006  0.397
2003 Nakata T, Hirokawa N. Microtubules provide directional cues for polarized axonal transport through interaction with kinesin motor head. The Journal of Cell Biology. 162: 1045-55. PMID 12975348 DOI: 10.1083/jcb.200302175  0.402
2003 Okada Y, Higuchi H, Hirokawa N. Processivity of the single-headed kinesin KIF1A through biased binding to tubulin. Nature. 424: 574-7. PMID 12891363 DOI: 10.1038/nature01804  0.347
2003 Homma N, Takei Y, Tanaka Y, Nakata T, Terada S, Kikkawa M, Noda Y, Hirokawa N. Kinesin superfamily protein 2A (KIF2A) functions in suppression of collateral branch extension. Cell. 114: 229-39. PMID 12887924 DOI: 10.1016/S0092-8674(03)00522-1  0.427
2003 Miki H, Setou M, Hirokawa N. Kinesin superfamily proteins (KIFs) in the mouse transcriptome. Genome Research. 13: 1455-65. PMID 12819144 DOI: 10.1101/gr.984503  0.35
2003 Guillaud L, Setou M, Hirokawa N. KIF17 dynamics and regulation of NR2B trafficking in hippocampal neurons. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 23: 131-40. PMID 12514209 DOI: 10.1523/Jneurosci.23-01-00131.2003  0.752
2002 Macho B, Brancorsini S, Fimia GM, Setou M, Hirokawa N, Sassone-Corsi P. CREM-dependent transcription in male germ cells controlled by a kinesin. Science (New York, N.Y.). 298: 2388-90. PMID 12493914 DOI: 10.1126/science.1077265  0.316
2002 Wong RW, Setou M, Teng J, Takei Y, Hirokawa N. Overexpression of motor protein KIF17 enhances spatial and working memory in transgenic mice. Proceedings of the National Academy of Sciences of the United States of America. 99: 14500-5. PMID 12391294 DOI: 10.1073/pnas.222371099  0.368
2002 Harada A, Teng J, Takei Y, Oguchi K, Hirokawa N. MAP2 is required for dendrite elongation, PKA anchoring in dendrites, and proper PKA signal transduction. The Journal of Cell Biology. 158: 541-9. PMID 12163474 DOI: 10.1083/jcb.200110134  0.363
2002 Xu Y, Takeda S, Nakata T, Noda Y, Tanaka Y, Hirokawa N. Role of KIFC3 motor protein in Golgi positioning and integration. The Journal of Cell Biology. 158: 293-303. PMID 12135985 DOI: 10.1083/jcb.200202058  0.35
2002 Setou M, Seog DH, Tanaka Y, Kanai Y, Takei Y, Kawagishi M, Hirokawa N. Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites. Nature. 417: 83-7. PMID 11986669 DOI: 10.1038/nature743  0.459
2002 Nakajima K, Takei Y, Tanaka Y, Nakagawa T, Nakata T, Noda Y, Setou M, Hirokawa N. Molecular motor KIF1C is not essential for mouse survival and motor-dependent retrograde Golgi apparatus-to-endoplasmic reticulum transport. Molecular and Cellular Biology. 22: 866-73. PMID 11784862 DOI: 10.1128/Mcb.22.3.866-873.2002  0.723
2002 Kikkawa M, Sablin EP, Okada Y, Yajima H, Fletterick RJ, Hirokawa N. Cryo-EM and X-ray crystallographic studies on the monomeric kinesin motor KIF1A Microscopy and Microanalysis. 8: 210. DOI: 10.1017/S1431927602100316  0.301
2001 Noda Y, Okada Y, Saito N, Setou M, Xu Y, Zhang Z, Hirokawa N. KIFC3, a microtubule minus end-directed motor for the apical transport of annexin XIIIb-associated Triton-insoluble membranes. The Journal of Cell Biology. 155: 77-88. PMID 11581287 DOI: 10.1083/jcb.200108042  0.437
2001 Teng J, Takei Y, Harada A, Nakata T, Chen J, Hirokawa N. Synergistic effects of MAP2 and MAP1B knockout in neuronal migration, dendritic outgrowth, and microtubule organization. The Journal of Cell Biology. 155: 65-76. PMID 11581286 DOI: 10.1083/jcb.200106025  0.331
2001 Wong RW, Setou M, Hirokawa N. Turning the current up on AMPA receptor trafficking. Trends in Cell Biology. 11: 320. PMID 11489626 DOI: 10.1016/S0962-8924(01)02073-6  0.328
2001 Miki H, Setou M, Kaneshiro K, Hirokawa N. All kinesin superfamily protein, KIF, genes in mouse and human. Proceedings of the National Academy of Sciences of the United States of America. 98: 7004-11. PMID 11416179 DOI: 10.1073/pnas.111145398  0.388
2001 Zhao C, Takita J, Tanaka Y, Setou M, Nakagawa T, Takeda S, Yang HW, Terada S, Nakata T, Takei Y, Saito M, Tsuji S, Hayashi Y, Hirokawa N. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell. 105: 587-97. PMID 11389829 DOI: 10.1016/S0092-8674(01)00363-4  0.785
2001 Kikkawa M, Sablin EP, Okada Y, Yajima H, Fletterick RJ, Hirokawa N. Switch-based mechanism of kinesin motors. Nature. 411: 439-45. PMID 11373668 DOI: 10.1038/35078000  0.381
2001 Hirokawa N, Noda Y. Preparation of recombinant kinesin superfamily proteins using the baculovirus system. Methods in Molecular Biology (Clifton, N.J.). 164: 57-63. PMID 11217615 DOI: 10.1385/1-59259-069-1:57  0.308
2000 Hirokawa N. Stirring up development with the heterotrimeric kinesin KIF3. Traffic (Copenhagen, Denmark). 1: 29-34. PMID 11208056 DOI: 10.1034/J.1600-0854.2000.010105.X  0.428
2000 Nakagawa T, Setou M, Seog D, Ogasawara K, Dohmae N, Takio K, Hirokawa N. A novel motor, KIF13A, transports mannose-6-phosphate receptor to plasma membrane through direct interaction with AP-1 complex. Cell. 103: 569-81. PMID 11106728 DOI: 10.1016/S0092-8674(00)00161-6  0.713
2000 Terada S, Hirokawa N. Moving on to the cargo problem of microtubule-dependent motors in neurons. Current Opinion in Neurobiology. 10: 566-73. PMID 11084318 DOI: 10.1016/S0959-4388(00)00129-X  0.438
2000 Terada S, Kinjo M, Hirokawa N. Oligomeric tubulin in large transporting complex is transported via kinesin in squid giant axons. Cell. 103: 141-55. PMID 11051554 DOI: 10.1016/S0092-8674(00)00094-5  0.415
2000 Takei Y, Teng J, Harada A, Hirokawa N. Defects in axonal elongation and neuronal migration in mice with disrupted tau and map1b genes. The Journal of Cell Biology. 150: 989-1000. PMID 10973990 DOI: 10.1083/jcb.150.5.989  0.375
2000 Kanai Y, Okada Y, Tanaka Y, Harada A, Terada S, Hirokawa N. KIF5C, a novel neuronal kinesin enriched in motor neurons. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 20: 6374-84. PMID 10964943 DOI: 10.1523/Jneurosci.20-17-06374.2000  0.387
2000 Setou M, Nakagawa T, Seog DH, Hirokawa N. Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science (New York, N.Y.). 288: 1796-802. PMID 10846156 DOI: 10.1126/Science.288.5472.1796  0.716
2000 Takeda S, Yamazaki H, Seog DH, Kanai Y, Terada S, Hirokawa N. Kinesin superfamily protein 3 (KIF3) motor transports fodrin-associating vesicles important for neurite building. The Journal of Cell Biology. 148: 1255-65. PMID 10725338 DOI: 10.1083/jcb.148.6.1255  0.472
2000 Ikegami S, Harada A, Hirokawa N. Muscle weakness, hyperactivity, and impairment in fear conditioning in tau-deficient mice. Neuroscience Letters. 279: 129-32. PMID 10688046 DOI: 10.1016/S0304-3940(99)00964-7  0.328
2000 Kikkawa M, Okada Y, Hirokawa N. 15 A resolution model of the monomeric kinesin motor, KIF1A. Cell. 100: 241-52. PMID 10660047 DOI: 10.1016/S0092-8674(00)81562-7  0.384
2000 Okada Y, Hirokawa N. Mechanism of the single-headed processivity: diffusional anchoring between the K-loop of kinesin and the C terminus of tubulin. Proceedings of the National Academy of Sciences of the United States of America. 97: 640-5. PMID 10639132 DOI: 10.1073/pnas.97.2.640  0.356
1999 Terada S, Tsujimoto T, Takei Y, Takahashi T, Hirokawa N. Impairment of inhibitory synaptic transmission in mice lacking synapsin I. The Journal of Cell Biology. 145: 1039-48. PMID 10352020 DOI: 10.1083/jcb.145.5.1039  0.521
1999 Takeda S, Yonekawa Y, Tanaka Y, Okada Y, Nonaka S, Hirokawa N. Left-right asymmetry and kinesin superfamily protein KIF3A: new insights in determination of laterality and mesoderm induction by kif3A-/- mice analysis. The Journal of Cell Biology. 145: 825-36. PMID 10330409 DOI: 10.1083/jcb.145.4.825  0.314
1999 Okada Y, Hirokawa N. A processive single-headed motor: kinesin superfamily protein KIF1A. Science (New York, N.Y.). 283: 1152-7. PMID 10024239 DOI: 10.1126/science.283.5405.1152  0.374
1998 Nonaka S, Tanaka Y, Okada Y, Takeda S, Harada A, Kanai Y, Kido M, Hirokawa N. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell. 95: 829-37. PMID 9865700 DOI: 10.1016/S0092-8674(00)81705-5  0.331
1998 Santama N, Krijnse-Locker J, Griffiths G, Noda Y, Hirokawa N, Dotti CG. KIF2beta, a new kinesin superfamily protein in non-neuronal cells, is associated with lysosomes and may be implicated in their centrifugal translocation. The Embo Journal. 17: 5855-67. PMID 9774330 DOI: 10.1093/Emboj/17.20.5855  0.44
1998 Hirokawa N, Takeda S. Gene targeting studies begin to reveal the function of neurofilament proteins. The Journal of Cell Biology. 143: 1-4. PMID 9763415 DOI: 10.1083/jcb.143.1.1  0.329
1998 Funakoshi T, Hirokawa N. Application of caged fluorescein-labeled tubulin to studies of microtubule dynamics and transport of tubulin molecules in axons. Methods in Enzymology. 291: 348-56. PMID 9661158 DOI: 10.1016/S0076-6879(98)91022-9  0.374
1998 Kim W, Tang Y, Okada Y, Torrey TA, Chattopadhyay SK, Pfleiderer M, Falkner FG, Dorner F, Choi W, Hirokawa N, Morse HC. Binding of murine leukemia virus Gag polyproteins to KIF4, a microtubule-based motor protein. Journal of Virology. 72: 6898-901. PMID 9658142 DOI: 10.1128/Jvi.72.8.6898-6901.1998  0.389
1998 Tanaka Y, Kanai Y, Okada Y, Nonaka S, Takeda S, Harada A, Hirokawa N. Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell. 93: 1147-58. PMID 9657148 DOI: 10.1016/S0092-8674(00)81459-2  0.317
1998 Yonekawa Y, Harada A, Okada Y, Funakoshi T, Kanai Y, Takei Y, Terada S, Noda T, Hirokawa N. Defect in synaptic vesicle precursor transport and neuronal cell death in KIF1A motor protein-deficient mice. The Journal of Cell Biology. 141: 431-41. PMID 9548721 DOI: 10.1083/jcb.141.2.431  0.438
1998 Harada A, Takei Y, Kanai Y, Tanaka Y, Nonaka S, Hirokawa N. Golgi vesiculation and lysosome dispersion in cells lacking cytoplasmic dynein. The Journal of Cell Biology. 141: 51-9. PMID 9531547 DOI: 10.1083/jcb.141.1.51  0.388
1998 Hirokawa N, Noda Y, Okada Y. Kinesin and dynein superfamily proteins in organelle transport and cell division. Current Opinion in Cell Biology. 10: 60-73. PMID 9484596 DOI: 10.1016/S0955-0674(98)80087-2  0.43
1998 Nakata T, Terada S, Hirokawa N. Visualization of the dynamics of synaptic vesicle and plasma membrane proteins in living axons. The Journal of Cell Biology. 140: 659-74. PMID 9456325 DOI: 10.1083/jcb.140.3.659  0.381
1998 Hirokawa N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science (New York, N.Y.). 279: 519-26. PMID 9438838 DOI: 10.1126/science.279.5350.519  0.417
1998 Nagata Ki, Puls A, Futter C, Aspenstrom P, Schaefer E, Nakata T, Hirokawa N, Hall A. The MAP kinase kinase kinase MLK2 co-localizes with activated JNK along microtubules and associates with kinesin superfamily motor KIF3. The Embo Journal. 17: 149-58. PMID 9427749 DOI: 10.1093/Emboj/17.1.149  0.342
1998 Hirokawa N. Neuronal cytoskeleton and mechanism of organelle transport: Molecular neuroscience of new motoer proteins, KIFs Neuroscience Research. 31: S3. DOI: 10.1016/S0168-0102(98)81558-7  0.373
1997 Hirokawa N, Funakoshi ST, Takeda S. Slow axonal transport: the subunit transport model. Trends in Cell Biology. 7: 384-8. PMID 17708986 DOI: 10.1016/S0962-8924(97)01133-1  0.378
1997 Hirokawa N. The mechanisms of fast and slow transport in neurons: identification and characterization of the new kinesin superfamily motors. Current Opinion in Neurobiology. 7: 605-14. PMID 9384541 DOI: 10.1016/S0959-4388(97)80079-7  0.432
1997 Nakagawa T, Tanaka Y, Matsuoka E, Kondo S, Okada Y, Noda Y, Kanai Y, Hirokawa N. Identification and classification of 16 new kinesin superfamily (KIF) proteins in mouse genome. Proceedings of the National Academy of Sciences of the United States of America. 94: 9654-9. PMID 9275178 DOI: 10.1073/Pnas.94.18.9654  0.711
1997 Takei Y, Kondo S, Harada A, Inomata S, Noda T, Hirokawa N. Delayed development of nervous system in mice homozygous for disrupted microtubule-associated protein 1B (MAP1B) gene. The Journal of Cell Biology. 137: 1615-26. PMID 9199175 DOI: 10.1083/Jcb.137.7.1615  0.353
1997 Saito N, Okada Y, Noda Y, Kinoshita Y, Kondo S, Hirokawa N. KIFC2 is a novel neuron-specific C-terminal type kinesin superfamily motor for dendritic transport of multivesicular body-like organelles. Neuron. 18: 425-38. PMID 9115736 DOI: 10.1016/S0896-6273(00)81243-X  0.453
1997 Okada Y, Saito N, Noda Y, Kinoshita Y, Hirokawa N. 604 KIFC2, a novel C-terminal type kinesin superfamily protein, is a neuron specific motor for the transport of a novel multivesicular body in dendrites Neuroscience Research. 28: S84. DOI: 10.1016/S0168-0102(97)90216-9  0.415
1997 Terada S, Tsujimoto T, Takei Y, Takahashi T, Hirokawa N. 313 Inhibitory synaptic transmission in mice lacking synapsin I Neuroscience Research. 28: S57. DOI: 10.1016/S0168-0102(97)90144-9  0.497
1996 Hirokawa N. Organelle transport along microtubules - the role of KIFs. Trends in Cell Biology. 6: 135-41. PMID 15157476 DOI: 10.1016/0962-8924(96)10003-9  0.425
1996 Hirokawa N. The molecular mechanism of organelle transport along microtubules: the identification and characterization of KIFs (kinesin superfamily proteins). Cell Structure and Function. 21: 357-67. PMID 9118241 DOI: 10.1247/Csf.21.357  0.436
1996 Sato-Harada R, Okabe S, Umeyama T, Kanai Y, Hirokawa N. Microtubule-associated proteins regulate microtubule function as the track for intracellular membrane organelle transports. Cell Structure and Function. 21: 283-95. PMID 9118234 DOI: 10.1247/Csf.21.283  0.44
1996 Wolf SG, Nogales E, Kikkawa M, Gratzinger D, Hirokawa N, Downing KH. Interpreting a medium-resolution model of tubulin: comparison of zinc-sheet and microtubule structure. Journal of Molecular Biology. 262: 485-501. PMID 8893858 DOI: 10.1006/Jmbi.1996.0530  0.33
1996 Yamazaki H, Nakata T, Okada Y, Hirokawa N. Cloning and characterization of KAP3: a novel kinesin superfamily-associated protein of KIF3A/3B. Proceedings of the National Academy of Sciences of the United States of America. 93: 8443-8. PMID 8710890 DOI: 10.1073/Pnas.93.16.8443  0.365
1996 Funakoshi T, Takeda S, Hirokawa N. Active transport of photoactivated tubulin molecules in growing axons revealed by a new electron microscopic analysis. The Journal of Cell Biology. 133: 1347-53. PMID 8682869 DOI: 10.1083/Jcb.133.6.1347  0.368
1996 Terada S, Nakata T, Peterson AC, Hirokawa N. Visualization of slow axonal transport in vivo. Science (New York, N.Y.). 273: 784-8. PMID 8670416 DOI: 10.1126/Science.273.5276.784  0.391
1996 Hirokawa N, Funakoshi T, Sato-Harada R, Kanai Y. Selective stabilization of tau in axons and microtubule-associated protein 2C in cell bodies and dendrites contributes to polarized localization of cytoskeletal proteins in mature neurons. The Journal of Cell Biology. 132: 667-79. PMID 8647897 DOI: 10.1083/Jcb.132.4.667  0.385
1996 Takemura R, Nakata T, Okada Y, Yamazaki H, Zhang Z, Hirokawa N. mRNA expression of KIF1A, KIF1B, KIF2, KIF3A, KIF3B, KIF4, KIF5, and cytoplasmic dynein during axonal regeneration. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 16: 31-5. PMID 8613797 DOI: 10.1523/Jneurosci.16-01-00031.1996  0.363
1996 Takei Y, Harada A, Takeada S, Kobayashi K, Tarada S, Noda T, Takahashi T, Hirokawa N. 713 Synapsin I daficiancy rasults in the structural change in tha presynaptic tarminals in tha Burina nervous system Neuroscience Research. 25: S83. DOI: 10.1016/0168-0102(96)88785-2  0.496
1996 Terada S, Nakata T, Peterson AC, Hirokawa N. 711 Visualization of slow axonal transport in vivo Neuroscience Research. 25: S82. DOI: 10.1016/0168-0102(96)88783-9  0.326
1996 Okada Y, Saito N, Noda Y, Hirokawa N. 710 Cloning and analysis of a novel C-terminal motor domain type kinesin superfamily motor protein, KIFC2, which is predominantly expressed in neurons Neuroscience Research. 25: S82. DOI: 10.1016/0168-0102(96)88782-7  0.391
1996 Noda Y, Okada Y, Saito N, Hirokawa N. 708 Cloning and analysis of a novel C-Terminal motor domain type kinesin superfamily motor protein, KIFC 3 Neuroscience Research. 25: S81. DOI: 10.1016/0168-0102(96)88780-3  0.37
1996 Yonekawa Y, Harada A, Okada Y, Takei Y, Noda T, Hirokawa N. 707 Targetd disruption of the axonal motor protein KIF1A in the mouse Neuroscience Research. 25: S81. DOI: 10.1016/0168-0102(96)88779-7  0.395
1995 Takei Y, Harada A, Takeda S, Kobayashi K, Terada S, Noda T, Takahashi T, Hirokawa N. Synapsin I deficiency results in the structural change in the presynaptic terminals in the murine nervous system. The Journal of Cell Biology. 131: 1789-800. PMID 8557745 DOI: 10.1083/Jcb.131.6.1789  0.542
1995 Kanai Y, Hirokawa N. Sorting mechanisms of tau and MAP2 in neurons: suppressed axonal transit of MAP2 and locally regulated microtubule binding. Neuron. 14: 421-32. PMID 7857650 DOI: 10.1016/0896-6273(95)90298-8  0.383
1995 Nakagawa T, Chen J, Zhang Z, Kanai Y, Hirokawa N. Two distinct functions of the carboxyl-terminal tail domain of NF-M upon neurofilament assembly: cross-bridge formation and longitudinal elongation of filaments. The Journal of Cell Biology. 129: 411-29. PMID 7721944 DOI: 10.1083/Jcb.129.2.411  0.67
1995 Kikkawa M, Ishikawa T, Wakabayashi T, Hirokawa N. Three-dimensional structure of the kinesin head-microtubule complex. Nature. 376: 274-7. PMID 7617041 DOI: 10.1038/376274a0  0.399
1995 Takemura R, Okabe S, Umeyama T, Hirokawa N. Polarity orientation and assembly process of microtubule bundles in nocodazole-treated, MAP2c-transfected COS cells. Molecular Biology of the Cell. 6: 981-96. PMID 7579713 DOI: 10.1091/Mbc.6.8.981  0.381
1995 Yamazaki H, Nakata T, Okada Y, Hirokawa N. KIF3A/B: a heterodimeric kinesin superfamily protein that works as a microtubule plus end-directed motor for membrane organelle transport. The Journal of Cell Biology. 130: 1387-99. PMID 7559760 DOI: 10.1083/Jcb.130.6.1387  0.449
1995 Takeda S, Funakoshi T, Hirokawa N. Tubulin dynamics in neuronal axons of living zebrafish embryos. Neuron. 14: 1257-64. PMID 7541636 DOI: 10.1016/0896-6273(95)90272-4  0.359
1995 Okada Y, Yamazaki H, Sekine-Aizawa Y, Hirokawa N. The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell. 81: 769-80. PMID 7539720 DOI: 10.1016/0092-8674(95)90538-3  0.467
1995 Okada Y, Sato-Yoshitake R, Hirokawa N. The activation of protein kinase A pathway selectively inhibits anterograde axonal transport of vesicles but not mitochondria transport or retrograde transport in vivo. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 15: 3053-64. PMID 7536826 DOI: 10.1523/Jneurosci.15-04-03053.1995  0.401
1995 Noda Y, Sato-Yoshitake R, Kondo S, Nangaku M, Hirokawa N. KIF2 is a new microtubule-based anterograde motor that transports membranous organelles distinct from those carried by kinesin heavy chain or KIF3A/B. The Journal of Cell Biology. 129: 157-67. PMID 7535303 DOI: 10.1083/Jcb.129.1.157  0.465
1995 Nakata T, Hirokawa N. Point mutation of adenosine triphosphate-binding motif generated rigor kinesin that selectively blocks anterograde lysosome membrane transport. The Journal of Cell Biology. 131: 1039-53. PMID 7490281 DOI: 10.1083/jcb.131.4.1039  0.417
1995 HARADA A, OGUCHI K, Okabe S, KUNO J, IKEGAMI S, TERADA S, OHSHIMA T, SATO-YOSHITAKE R, NODA T, HIROKAWA N. Production and Analysis of Mice Deficient in Microtubule-Associated-Protein Tau. Proceedings of the Japanese Society of Animal Models For Human Diseases. 11: 32-40. DOI: 10.1538/Expanim1992.11.32  0.394
1994 Harada A, Oguchi K, Okabe S, Kuno J, Terada S, Ohshima T, Sato-Yoshitake R, Takei Y, Noda T, Hirokawa N. Altered microtubule organization in small-calibre axons of mice lacking tau protein. Nature. 369: 488-91. PMID 8202139 DOI: 10.1038/369488A0  0.389
1994 Hirokawa N. Microtubule organization and dynamics dependent on microtubule-associated proteins. Current Opinion in Cell Biology. 6: 74-81. PMID 8167029 DOI: 10.1016/0955-0674(94)90119-8  0.378
1994 Sekine Y, Okada Y, Noda Y, Kondo S, Aizawa H, Takemura R, Hirokawa N. A novel microtubule-based motor protein (KIF4) for organelle transports, whose expression is regulated developmentally. The Journal of Cell Biology. 127: 187-201. PMID 7929562 DOI: 10.1083/jcb.127.1.187  0.468
1994 Kikkawa M, Ishikawa T, Nakata T, Wakabayashi T, Hirokawa N. Direct visualization of the microtubule lattice seam both in vitro and in vivo. The Journal of Cell Biology. 127: 1965-71. PMID 7806574 DOI: 10.1083/Jcb.127.6.1965  0.381
1994 Nangaku M, Sato-Yoshitake R, Okada Y, Noda Y, Takemura R, Yamazaki H, Hirokawa N. KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell. 79: 1209-20. PMID 7528108 DOI: 10.1016/0092-8674(94)90012-4  0.45
1994 Kondo S, Sato-Yoshitake R, Noda Y, Aizawa H, Nakata T, Matsuura Y, Hirokawa N. KIF3A is a new microtubule-based anterograde motor in the nerve axon. The Journal of Cell Biology. 125: 1095-107. PMID 7515068 DOI: 10.1083/jcb.125.5.1095  0.445
1994 Funakoshi T, Hirokawa N. Behavior of photoactivated microtubules in growing axons revealed by electron microscopic analysis Neuroscience Research Supplements. 19: S88. DOI: 10.1016/0921-8696(94)92512-7  0.319
1994 Nakagawa T, Chen J, Zhang Z, Kanai Y, Hirokawa N. Functions of the carboxyl terminal tail domain of NF-M upon neurofilament assembly Neuroscience Research Supplements. 19: S88. DOI: 10.1016/0921-8696(94)92511-9  0.648
1994 Yamazaki H, Nakata T, Okada Y, Hirokawa N. KIF3B forms a heterodimer with KIF3A and works as a new microtubule-based anterograde motor of membrane organelle transport Neuroscience Research Supplements. 19: S84. DOI: 10.1016/0921-8696(94)92500-3  0.4
1994 Noda Y, Sato-Yoshitake R, Kondo S, Nangaku M, Hirokawa N. KIF2 is a new anterograde microtubule based motor which transports membranous organelles distinct from those carried by KHC or KIF3A/B Neuroscience Research Supplements. 19: S84. DOI: 10.1016/0921-8696(94)92499-6  0.392
1994 Okada Y, Yamazaki H, Sekine Y, Hirokawa N. KIF1A is a unique monomeric kinesin-like motor for the fast axonal transport Neuroscience Research Supplements. 19: S83. DOI: 10.1016/0921-8696(94)92497-X  0.408
1994 Hirokawa N. Molecular mechanism of axonal transports. Identification and characterization of new microtubule dependent molecular motors, KIFS Neuroscience Research Supplements. 19: S16. DOI: 10.1016/0921-8696(94)92310-8  0.417
1993 Okabe S, Miyasaka H, Hirokawa N. Dynamics of the neuronal intermediate filaments. The Journal of Cell Biology. 121: 375-86. PMID 8468352 DOI: 10.1083/Jcb.121.2.375  0.371
1993 Takemura R, Okabe S, Kobayashi N, Hirokawa N. Reorganization of brain spectrin (fodrin) during differentiation of PC12 cells. Neuroscience. 52: 381-91. PMID 8450952 DOI: 10.1016/0306-4522(93)90165-C  0.333
1993 Umeyama T, Okabe S, Kanai Y, Hirokawa N. Dynamics of microtubules bundled by microtubule associated protein 2C (MAP2C). The Journal of Cell Biology. 120: 451-65. PMID 8421058 DOI: 10.1083/Jcb.120.2.451  0.393
1993 Noda Y, Nakata T, Hirokawa N. Localization of dynamin: widespread distribution in mature neurons and association with membranous organelles. Neuroscience. 55: 113-27. PMID 8350983 DOI: 10.1016/0306-4522(93)90459-S  0.405
1993 Hirokawa N. Axonal transport and the cytoskeleton. Current Opinion in Neurobiology. 3: 724-31. PMID 8260821 DOI: 10.1016/0959-4388(93)90144-N  0.428
1993 Nakata T, Sato-Yoshitake R, Okada Y, Noda Y, Hirokawa N. Thermal drift is enough to drive a single microtubule along its axis even in the absence of motor proteins. Biophysical Journal. 65: 2504-10. PMID 7906153 DOI: 10.1016/S0006-3495(93)81304-3  0.319
1993 Zhang Z, Tanaka Y, Nonaka S, Aizawa H, Kawasaki H, Nakata T, Hirokawa N. The primary structure of rat brain (cytoplasmic) dynein heavy chain, a cytoplasmic motor enzyme. Proceedings of the National Academy of Sciences of the United States of America. 90: 7928-32. PMID 7690137 DOI: 10.1073/Pnas.90.17.7928  0.316
1993 Okabe S, Hirokawa N. Do photobleached fluorescent microtubules move?: re-evaluation of fluorescence laser photobleaching both in vitro and in growing Xenopus axon. The Journal of Cell Biology. 120: 1177-86. PMID 7679673 DOI: 10.1083/Jcb.120.5.1177  0.377
1993 Hirokawa N. Mechanism of axonal transport. Identification of new molecular motors and regulations of transports. Neuroscience Research. 18: 1-9. PMID 7510857 DOI: 10.1016/0168-0102(93)90099-C  0.439
1993 Okada Y, Sekine Y, Hirokawa N. 621 The expression and the analysis on the motor activity of KIF4, a new member of kinesin superfamily in the murine cns Neuroscience Research Supplements. 18: S78. DOI: 10.1016/S0921-8696(05)80889-8  0.341
1993 Kondo S, Sato R, Aizawa H, Nakata T, Hirokawa N. 620 KIF3 is a new motor for the anterograde fast axonal transport in the nerve axon Neuroscience Research Supplements. 18: S77. DOI: 10.1016/S0921-8696(05)80888-6  0.361
1993 Zhang Z, Tanaka Y, Nonaka S, Aizawa H, Nakata T, Hirokawa N. 614 The primary structure of rat brain (cytoplasmic) dynein heavy chain, a cytoplasmic motor enzyme Neuroscience Research Supplements. 18. DOI: 10.1016/S0921-8696(05)80882-5  0.309
1993 Nangaku M, Sato-Yoshitake R, Noda Y, Okada Y, Hirokawa N. 612 Cell biological and morphological analysis of a new kinesin-related protein KIF1B Neuroscience Research Supplements. 18: S75. DOI: 10.1016/S0921-8696(05)80880-1  0.307
1993 Kanai Y, Hirokawa N. 611 Mechanisms of differential localization of tau, MAP2 and MAP2C in neurons revealed by cDNA transfection Neuroscience Research Supplements. 18: S74. DOI: 10.1016/S0921-8696(05)80879-5  0.308
1993 Hagiwara H, Yorifuji H, Sato-Yoshitake R, Hirokawa N. 610 Interaction between kinesin or cytoplasmic dynein and tau or MAP2 for the binding to microtubules Neuroscience Research Supplements. 18: S74. DOI: 10.1016/S0921-8696(05)80878-3  0.329
1993 Harada A, Oguchi K, Terada S, Noda T, Hirokawa N. 609 Inactivation of the microtubule-associated protein tau in the mouse Neuroscience Research Supplements. 18: S74. DOI: 10.1016/S0921-8696(05)80877-1  0.351
1992 Hirokawa N, Okabe S. Microtubules on the move? Current Biology : Cb. 2: 193-5. PMID 15335974 DOI: 10.1016/0960-9822(92)90524-E  0.36
1992 Nakata T, Hirokawa N. Organization of cortical cytoskeleton of cultured chromaffin cells and involvement in secretion as revealed by quick-freeze, deep-etching, and double-label immunoelectron microscopy. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 12: 2186-97. PMID 1607935 DOI: 10.1523/Jneurosci.12-06-02186.1992  0.303
1992 Okabe S, Hirokawa N. Differential behavior of photoactivated microtubules in growing axons of mouse and frog neurons. The Journal of Cell Biology. 117: 105-20. PMID 1556148 DOI: 10.1083/Jcb.117.1.105  0.391
1992 Takeuchi M, Hisanaga S, Umeyama T, Hirokawa N. The 72-kDa microtubule-associated protein from porcine brain. Journal of Neurochemistry. 58: 1510-6. PMID 1548484 DOI: 10.1111/J.1471-4159.1992.Tb11372.X  0.329
1992 Hisanaga S, Endo S, Hirokawa N, Sakai H, Pudles J. Ultrastructure of detergent-resistant cytoskeletons in the noncortical domain of sea urchin eggs as revealed by the quick-freeze deep-etch technique. Cell Structure and Function. 17: 277-85. PMID 1473157 DOI: 10.1247/Csf.17.277  0.301
1992 Tanaka Y, Kawahata K, Nakata T, Hirokawa N. Chronological expression of microtubule-associated proteins (MAPs) in EC cell P19 after neuronal induction by retinoic acid. Brain Research. 596: 269-78. PMID 1467987 DOI: 10.1016/0006-8993(92)91557-U  0.352
1992 Chen J, Kanai Y, Cowan NJ, Hirokawa N. Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons. Nature. 360: 674-7. PMID 1465130 DOI: 10.1038/360674A0  0.375
1992 Aizawa H, Sekine Y, Takemura R, Zhang Z, Nangaku M, Hirokawa N. Kinesin family in murine central nervous system. The Journal of Cell Biology. 119: 1287-96. PMID 1447303 DOI: 10.1083/Jcb.119.5.1287  0.426
1992 Sato-Yoshitake R, Yorifuji H, Inagaki M, Hirokawa N. The phosphorylation of kinesin regulates its binding to synaptic vesicles. The Journal of Biological Chemistry. 267: 23930-6. PMID 1429730  0.314
1992 Oshima T, Okabe S, Hirokawa N. Immunocytochemical localization of 205 kDa microtubule-associated protein (205 kDa MAP) in the guinea pig organ of Corti. Brain Research. 590: 53-65. PMID 1422847 DOI: 10.1016/0006-8993(92)91081-O  0.332
1992 Maeda K, Nakata T, Noda Y, Sato-Yoshitake R, Hirokawa N. Interaction of dynamin with microtubules: its structure and GTPase activity investigated by using highly purified dynamin. Molecular Biology of the Cell. 3: 1181-94. PMID 1421574 DOI: 10.1091/Mbc.3.10.1181  0.379
1992 Kanai Y, Chen J, Hirokawa N. Microtubule bundling by tau proteins in vivo: analysis of functional domains. The Embo Journal. 11: 3953-61. PMID 1396588 DOI: 10.1002/J.1460-2075.1992.Tb05489.X  0.362
1992 Okada Y, Sato-Yoshitake R, Hirokawa N. Phosphorylation of kinesin by A-kinase selectively inhibits fast anterograde axonal transport in vivo Neuroscience Research Supplements. 17: 132. DOI: 10.1016/0921-8696(92)90900-L  0.329
1992 Kanai Y, Chen J, Hirokawa N. Microtubule bundling by tau proteins in vivo: Analysis of the functional domains Neuroscience Research Supplements. 17: 130. DOI: 10.1016/0921-8696(92)90895-8  0.355
1992 Okabe S, Hirokawa N. Movement of photobleached microtubules in growing xenopus axons Neuroscience Research Supplements. 17: 129. DOI: 10.1016/0921-8696(92)90891-4  0.342
1992 Sato-Yoshitake R, Okabe S, Ohse T, Umeyama T, Kanai Y, Hirokawa N. Organella transport is inhibited in fibroblasts transfected with brain specific microtubule-associated proteins Neuroscience Research Supplements. 17: 129. DOI: 10.1016/0921-8696(92)90890-D  0.354
1992 Nakata T, Sato-Yoshitake R, Okada Y, Noda Y, Hirokawa N. Is dynamin a microtubule-associated motor in neurons? Neuroscience Research Supplements. 17: 128. DOI: 10.1016/0921-8696(92)90889-9  0.38
1992 Aizawa H, Sekine Y, Takemura R, Zhang Z, Nangaku M, Hirokawa N. Identification of new microtubules associated motors for organelle transports in neurons Neuroscience Research Supplements. 17: 128. DOI: 10.1016/0921-8696(92)90888-8  0.415
1991 Takemura R, Kanai Y, Hirokawa N. In situ localization of tau mRNA in developing rat brain. Neuroscience. 44: 393-407. PMID 1944892 DOI: 10.1016/0306-4522(91)90064-U  0.353
1991 Nakata T, Iwamoto A, Noda Y, Takemura R, Yoshikura H, Hirokawa N. Predominant and developmentally regulated expression of dynamin in neurons. Neuron. 7: 461-9. PMID 1832879 DOI: 10.1016/0896-6273(91)90298-E  0.36
1991 Hirokawa N, Sato-Yoshitake R, Kobayashi N, Pfister KK, Bloom GS, Brady ST. Kinesin associates with anterogradely transported membranous organelles in vivo. The Journal of Cell Biology. 114: 295-302. PMID 1712789 DOI: 10.1083/Jcb.114.2.295  0.414
1991 Okabe S, Hirokawa N. Actin dynamics in growth cones. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 11: 1918-29. PMID 1712377 DOI: 10.1523/Jneurosci.11-07-01918.1991  0.324
1991 Umeyama T, Kanai Y, Okabe S, Hirokawa N. Microtubule-associated protein 2C(MAP2C), molecular cloning and transfection into fibroblast Neuroscience Research Supplements. 14: S89. DOI: 10.1016/S0921-8696(06)80254-9  0.324
1991 Kanai Y, Hirokawa N. Microtubule bundling in axon is regulated by alternative splicing of tau proteins Neuroscience Research Supplements. 14: S88. DOI: 10.1016/S0921-8696(06)80252-5  0.382
1991 Sato-Yoshitake R, Yorifuji H, Hirokawa N. Phosphorylation of kinesin regulates its binding to synaptic vesicles Neuroscience Research Supplements. 14. DOI: 10.1016/S0921-8696(06)80032-0  0.314
1991 Hirokawa N, Sato-Yoshitake R, Kobayashi N. Mechanism of the bidirectional axonal transport. Localization of brain dynein (MAP1C) and kinesin in vivo Neuroscience Research Supplements. 14: S14. DOI: 10.1016/S0921-8696(06)80030-7  0.364
1991 Umeyama T, Okabe S, Hirokawa N. Dynamics of microtubule bundles formed by transfection of MAP2C cDNA Neuroscience Research Supplements. 16: 50. DOI: 10.1016/0921-8696(91)90785-L  0.309
1991 Okada Y, Hirokawa N. Functional differentiation of axonal microtubules: Tyrosinated α-tubulin rich microtubules for transport, and detyrosinated α-tubulin rich microtubules for architecture Neuroscience Research Supplements. 16: 49. DOI: 10.1016/0921-8696(91)90783-J  0.37
1991 Hirokawa N. Function of microtubules and microtubules associated proteins in the neuronal cytoskeleton Neuroscience Research Supplements. 16: VIII. DOI: 10.1016/0921-8696(91)90615-T  0.384
1990 Hisanaga S, Ikai A, Hirokawa N. Molecular architecture of the neurofilament. I. Subunit arrangement of neurofilament L protein in the intermediate-sized filament. Journal of Molecular Biology. 211: 857-69. PMID 2313698 DOI: 10.1016/0022-2836(90)90079-2  0.317
1990 Hirokawa N, Sato-Yoshitake R, Yoshida T, Kawashima T. Brain dynein (MAP1C) localizes on both anterogradely and retrogradely transported membranous organelles in vivo. The Journal of Cell Biology. 111: 1027-37. PMID 2143999 DOI: 10.1083/Jcb.111.3.1027  0.371
1990 Nakata T, Sobue K, Hirokawa N. Conformational change and localization of calpactin I complex involved in exocytosis as revealed by quick-freeze, deep-etch electron microscopy and immunocytochemistry. The Journal of Cell Biology. 110: 13-25. PMID 2136859 DOI: 10.1083/Jcb.110.1.13  0.303
1990 Harada A, Sobue K, Hirokawa N. Developmental changes of synapsin I subcellular localization in rat cerebellar neurons. Cell Structure and Function. 15: 329-42. PMID 2128210 DOI: 10.1247/Csf.15.329  0.373
1990 Okabe S, Hirokawa N. Turnover of fluorescently labelled tubulin and actin in the axon. Nature. 343: 479-82. PMID 1689016 DOI: 10.1038/343479A0  0.377
1990 Sato-Yoshitake R, Miyasaka H, Shiomura Y, Hirokawa N. MAP1B: Its molecular structure, localization, and phosphorylation-dependent expression in developing neurons Neuroscience Research Supplements. 15: S81. DOI: 10.1016/0921-8696(90)90271-4  0.312
1990 Hirokawa N. The neuronal cytoskeleton-morphogenesis, organelle transport, and synaptic transmission Neuroscience Research Supplements. 15: S5. DOI: 10.1016/0921-8696(90)90055-8  0.342
1989 Shiomura Y, Hirokawa N. A novel heat-stable 205 kDa microtubule-associated protein is involved in the neural development of the rat brain. Brain Research. 502: 356-64. PMID 2819472 DOI: 10.1016/0006-8993(89)90632-X  0.335
1989 Hirokawa N. The arrangement of actin filaments in the postsynaptic cytoplasm of the cerebellar cortex revealed by quick-freeze deep-etch electron microscopy. Neuroscience Research. 6: 269-75. PMID 2710429 DOI: 10.1016/0168-0102(89)90066-7  0.341
1989 Okabe S, Shiomura Y, Hirokawa N. Immunocytochemical localization of microtubule-associated proteins 1A and 2 in the rat retina. Brain Research. 483: 335-46. PMID 2706525 DOI: 10.1016/0006-8993(89)90178-9  0.32
1989 Okabe S, Hirokawa N. Incorporation and turnover of biotin-labeled actin microinjected into fibroblastic cells: an immunoelectron microscopic study. The Journal of Cell Biology. 109: 1581-95. PMID 2677022 DOI: 10.1083/Jcb.109.4.1581  0.318
1989 Okabe S, Hirokawa N. Rapid turnover of microtubule-associated protein MAP2 in the axon revealed by microinjection of biotinylated MAP2 into cultured neurons. Proceedings of the National Academy of Sciences of the United States of America. 86: 4127-31. PMID 2657741 DOI: 10.1073/Pnas.86.11.4127  0.349
1989 Sato-Yoshitake R, Shiomura Y, Miyasaka H, Hirokawa N. Microtubule-associated protein 1B: molecular structure, localization, and phosphorylation-dependent expression in developing neurons. Neuron. 3: 229-38. PMID 2562784 DOI: 10.1016/0896-6273(89)90036-6  0.407
1989 Hirokawa N, Sobue K, Kanda K, Harada A, Yorifuji H. The cytoskeletal architecture of the presynaptic terminal and molecular structure of synapsin 1. The Journal of Cell Biology. 108: 111-26. PMID 2536030 DOI: 10.1083/Jcb.108.1.111  0.35
1989 Hirokawa N, Pfister KK, Yorifuji H, Wagner MC, Brady ST, Bloom GS. Submolecular domains of bovine brain kinesin identified by electron microscopy and monoclonal antibody decoration. Cell. 56: 867-78. PMID 2522351 DOI: 10.1016/0092-8674(89)90691-0  0.368
1989 Kanai Y, Takemura R, Oshima T, Mori H, Ihara Y, Yanagisawa M, Masaki T, Hirokawa N. Expression of multiple tau isoforms and microtubule bundle formation in fibroblasts transfected with a single tau cDNA. The Journal of Cell Biology. 109: 1173-84. PMID 2504728 DOI: 10.1083/Jcb.109.3.1173  0.364
1989 Hisanaga S, Murofushi H, Okuhara K, Sato R, Masuda Y, Sakai H, Hirokawa N. The molecular structure of adrenal medulla kinesin. Cell Motility and the Cytoskeleton. 12: 264-72. PMID 2497994 DOI: 10.1002/cm.970120407  0.316
1989 Okabe S, Hirokawa N. Rapid turnover of microtubule-associated protein 2 in the axon revealed by microinjection of biotinylated MAP2 into spinal cord neurons in culture Neuroscience Research Supplements. 9: 28. DOI: 10.1016/0921-8696(89)90550-1  0.338
1988 Kobayashi N, Hirokawa N. Cytoskeletal architecture and immunocytochemical localization of fodrin in the terminal web of the ciliated epithelial cell. Cell Motility and the Cytoskeleton. 11: 167-77. PMID 3208297 DOI: 10.1002/cm.970110304  0.321
1988 Hirokawa N, Shiomura Y, Okabe S. Tau proteins: the molecular structure and mode of binding on microtubules. The Journal of Cell Biology. 107: 1449-59. PMID 3139677 DOI: 10.1083/Jcb.107.4.1449  0.374
1988 Okabe S, Hirokawa N. Microtubule dynamics in nerve cells: analysis using microinjection of biotinylated tubulin into PC12 cells. The Journal of Cell Biology. 107: 651-64. PMID 3047145 DOI: 10.1083/Jcb.107.2.651  0.324
1988 Hirokawa N, Hisanaga S, Shiomura Y. MAP2 is a component of crossbridges between microtubules and neurofilaments in the neuronal cytoskeleton: quick-freeze, deep-etch immunoelectron microscopy and reconstitution studies. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 8: 2769-79. PMID 3045269 DOI: 10.1523/Jneurosci.08-08-02769.1988  0.361
1987 Nakata T, Hirokawa N. Cytoskeletal reorganization of human platelets after stimulation revealed by the quick-freeze deep-etch technique. The Journal of Cell Biology. 105: 1771-80. PMID 3667697 DOI: 10.1083/Jcb.105.4.1771  0.321
1987 Hirokawa N, Hisanaga S. "Buttonin," a unique button-shaped microtubule-associated protein (75 kD) that decorates spindle microtubule surface hexagonally. The Journal of Cell Biology. 104: 1553-61. PMID 3584241 DOI: 10.1083/Jcb.104.6.1553  0.377
1987 Shiomura Y, Hirokawa N. The molecular structure of microtubule-associated protein 1A (MAP1A) in vivo and in vitro. An immunoelectron microscopy and quick-freeze, deep-etch study. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 7: 1461-9. PMID 3553448 DOI: 10.1523/Jneurosci.07-05-01461.1987  0.395
1987 Shiomura Y, Hirokawa N. Colocalization of microtubule-associated protein 1A and microtubule-associated protein 2 on neuronal microtubules in situ revealed with double-label immunoelectron microscopy. The Journal of Cell Biology. 104: 1575-8. PMID 3294858 DOI: 10.1083/Jcb.104.6.1575  0.353
1987 Hisanaga S, Hirokawa N. Substructure of sea urchin egg cytoplasmic dynein. Journal of Molecular Biology. 195: 919-27. PMID 2958634 DOI: 10.1016/0022-2836(87)90495-5  0.347
1986 Murofushi H, Kotani S, Aizawa H, Hisanaga S, Hirokawa N, Sakai H. Purification and characterization of a 190-kD microtubule-associated protein from bovine adrenal cortex. The Journal of Cell Biology. 103: 1911-9. PMID 3782289 DOI: 10.1083/jcb.103.5.1911  0.319
1986 Hirokawa N. Cytoskeletal architecture of the chicken hair cells revealed with the quick-freeze, deep-etch technique. Hearing Research. 22: 41-54. PMID 3733545 DOI: 10.1016/0378-5955(86)90076-6  0.314
1986 Hirokawa N. 270K microtubule-associated protein cross-reacting with anti-MAP2 IgG in the crayfish peripheral nerve axon. The Journal of Cell Biology. 103: 33-9. PMID 3722268 DOI: 10.1083/Jcb.103.1.33  0.335
1986 Hirokawa N. Quick-freeze, deep-etch visualization of the axonal cytoskeleton Trends in Neurosciences. 9: 67-71. DOI: 10.1016/0166-2236(86)90025-1  0.373
1986 Hirokawa N, Yorifuji H. Cytoskeletal architecture of reactivated crayfish axons, with special reference to crossbridges among microtubules and between microtubules and membrane organelles Cell Motility and the Cytoskeleton. 6: 458-468. DOI: 10.1002/CM.970060504  0.406
1985 Hirokawa N, Takemura R, Hisanaga S. Cytoskeletal architecture of isolated mitotic spindle with special reference to microtubule-associated proteins and cytoplasmic dynein. The Journal of Cell Biology. 101: 1858-70. PMID 2932452 DOI: 10.1083/Jcb.101.5.1858  0.387
1985 Hirokawa N, Bloom GS, Vallee RB. Cytoskeletal architecture and immunocytochemical localization of microtubule-associated proteins in regions of axons associated with rapid axonal transport: the beta,beta'-iminodipropionitrile-intoxicated axon as a model system. The Journal of Cell Biology. 101: 227-39. PMID 2409096 DOI: 10.1083/Jcb.101.1.227  0.38
1984 Hirokawa N, Glicksman MA, Willard MB. Organization of mammalian neurofilament polypeptides within the neuronal cytoskeleton. The Journal of Cell Biology. 98: 1523-36. PMID 6425303 DOI: 10.1083/Jcb.98.4.1523  0.316
1983 Hirokawa N, Cheney RE, Willard M. Location of a protein of the fodrin-spectrin-TW260/240 family in the mouse intestinal brush border. Cell. 32: 953-65. PMID 6831563 DOI: 10.1016/0092-8674(83)90080-6  0.334
1983 Hirokawa N, Keller TC, Chasan R, Mooseker MS. Mechanism of brush border contractility studied by the quick-freeze, deep-etch method. The Journal of Cell Biology. 96: 1325-36. PMID 6601660 DOI: 10.1083/Jcb.96.5.1325  0.337
1983 Cheney R, Hirokawa N, Levine J, Willard M. Intracellular movement of fodrin. Cell Motility. 3: 649-55. PMID 6198088 DOI: 10.1002/Cm.970030529  0.414
1982 Hirokawa N, Tilney LG, Fujiwara K, Heuser JE. Organization of actin, myosin, and intermediate filaments in the brush border of intestinal epithelial cells. The Journal of Cell Biology. 94: 425-43. PMID 7202010 DOI: 10.1083/Jcb.94.2.425  0.524
1982 Hirokawa N, Heuser JE. Internal and external differentiations of the postsynaptic membrane at the neuromuscular junction. Journal of Neurocytology. 11: 487-510. PMID 6980263 DOI: 10.1007/Bf01257990  0.491
1982 Hirokawa N, Tilney LG. Interactions between actin filaments and between actin filaments and membranes in quick-frozen and deeply etched hair cells of the chick ear. The Journal of Cell Biology. 95: 249-61. PMID 6890555 DOI: 10.1083/Jcb.95.1.249  0.311
1982 Hirokawa N, Heuser J. The inside and outside of gap-junction membranes visualized by deep etching. Cell. 30: 395-406. PMID 6814761 DOI: 10.1016/0092-8674(82)90237-9  0.467
1982 Hirokawa N. Cross-linker system between neurofilaments, microtubules, and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method. The Journal of Cell Biology. 94: 129-42. PMID 6181077 DOI: 10.1083/Jcb.94.1.129  0.336
1981 Hirokawa N, Heuser JE. Quick-freeze, deep-etch visualization of the cytoskeleton beneath surface differentiations of intestinal epithelial cells. The Journal of Cell Biology. 91: 399-409. PMID 7198124 DOI: 10.1083/Jcb.91.2.399  0.519
1981 Hirokawa N, Heuser JE. Structural evidence that botulinum toxin blocks neuromuscular transmission by impairing the calcium influx that normally accompanies nerve depolarization. The Journal of Cell Biology. 88: 160-71. PMID 6259176 DOI: 10.1083/Jcb.88.1.160  0.436
1980 Hirokawa N, Kirino T. An ultrastructural study of nerve and glial cells by freeze-substitution. Journal of Neurocytology. 9: 243-54. PMID 7003067 DOI: 10.1007/Bf01205160  0.317
Show low-probability matches.