Year |
Citation |
Score |
2024 |
Echeverria CV, Leathers TA, Rogers CD. Effectiveness of fixation methods for wholemount immunohistochemistry across cellular compartments in chick embryos. Biorxiv : the Preprint Server For Biology. PMID 38585750 DOI: 10.1101/2024.03.23.586361 |
0.657 |
|
2024 |
Rogers CD, Amemiya C, Arur S, Babonis L, Barresi M, Bartlett M, Behringer R, Benham-Pyle B, Bergmann D, Blackman B, Brown CT, Browne B, Camacho J, Chabu CY, Chow I, et al. Pluripotency of a founding field: rebranding developmental biology. Development (Cambridge, England). 151. PMID 38345109 DOI: 10.1242/dev.202342 |
0.641 |
|
2022 |
Leathers TA, Rogers CD. Time to go: neural crest cell epithelial-to-mesenchymal transition. Development (Cambridge, England). 149. PMID 35905012 DOI: 10.1242/dev.200712 |
0.446 |
|
2022 |
Adamson CJ, Morrison-Welch N, Rogers CD. The amazing and anomalous axolotls as scientific models. Developmental Dynamics : An Official Publication of the American Association of Anatomists. PMID 35322911 DOI: 10.1002/dvdy.470 |
0.699 |
|
2022 |
Jerome-Majewska LA, Rogers CD, Uribe RA. Editorial from the new Editors-in-Chief of 'Differentiation'. Differentiation; Research in Biological Diversity. 124: 60. PMID 35219897 DOI: 10.1016/j.diff.2022.02.004 |
0.673 |
|
2022 |
Monroy BY, Adamson CJ, Camacho-Avila A, Guerzon CN, Echeverria CV, Rogers CD. Expression atlas of avian neural crest proteins: Neurulation to migration. Developmental Biology. 483: 39-57. PMID 34990731 DOI: 10.1016/j.ydbio.2021.12.018 |
0.766 |
|
2020 |
Manohar S, Camacho-Magallanes A, Echeverria C, Rogers CD. Cadherin-11 Is Required for Neural Crest Specification and Survival. Frontiers in Physiology. 11: 563372. PMID 33192560 DOI: 10.3389/fphys.2020.563372 |
0.816 |
|
2019 |
Chacon J, Rogers CD. Early expression of Tubulin Beta-III in avian cranial neural crest cells. Gene Expression Patterns : Gep. 119067. PMID 31369820 DOI: 10.1016/J.Gep.2019.119067 |
0.612 |
|
2018 |
Rogers CD. Data on the effects of N-cadherin perturbation on the expression of type II cadherin proteins and major signaling pathways. Data in Brief. 20: 419-425. PMID 30175208 DOI: 10.1016/J.Dib.2018.08.029 |
0.385 |
|
2018 |
Rogers CD, Sorrells L, Bronner ME. A catenin-dependent balance between N-cadherin and E-cadherin controls neuroectodermal cell fate choices. Mechanisms of Development. PMID 30009960 DOI: 10.1016/J.Mod.2018.07.003 |
0.742 |
|
2018 |
Rogers CD, Nie S. Specifying neural crest cells: From chromatin to morphogens and factors in between. Wiley Interdisciplinary Reviews. Developmental Biology. e322. PMID 29722151 DOI: 10.1002/Wdev.322 |
0.804 |
|
2013 |
Rogers CD, Saxena A, Bronner ME. Sip1 mediates an E-cadherin-to-N-cadherin switch during cranial neural crest EMT. The Journal of Cell Biology. 203: 835-47. PMID 24297751 DOI: 10.1083/Jcb.201305050 |
0.821 |
|
2013 |
Rogers CD, Phillips JL, Bronner ME. Elk3 is essential for the progression from progenitor to definitive neural crest cell. Developmental Biology. 374: 255-63. PMID 23266330 DOI: 10.1016/J.Ydbio.2012.12.009 |
0.756 |
|
2012 |
Rogers CD, Jayasena CS, Nie S, Bronner ME. Neural crest specification: tissues, signals, and transcription factors. Wiley Interdisciplinary Reviews. Developmental Biology. 1: 52-68. PMID 23801667 DOI: 10.1002/Wdev.8 |
0.819 |
|
2011 |
Rogers CD, Ferzli GS, Casey ES. The response of early neural genes to FGF signaling or inhibition of BMP indicate the absence of a conserved neural induction module Bmc Developmental Biology. 11. PMID 22172147 DOI: 10.1186/1471-213X-11-74 |
0.793 |
|
2011 |
Rogers C, Bronner-Fraser M. The role of Sip1 in cranial neural crest development Developmental Biology. 356: 238-239. DOI: 10.1016/J.Ydbio.2011.05.416 |
0.503 |
|
2009 |
Rogers CD, Moody SA, Casey ES. Neural induction and factors that stabilize a neural fate. Birth Defects Research. Part C, Embryo Today : Reviews. 87: 249-62. PMID 19750523 DOI: 10.1002/Bdrc.20157 |
0.809 |
|
2009 |
Rogers CD, Harafuji N, Archer T, Cunningham DD, Casey ES. Xenopus Sox3 activates sox2 and geminin and indirectly represses Xvent2 expression to induce neural progenitor formation at the expense of non-neural ectodermal derivatives. Mechanisms of Development. 126: 42-55. PMID 18992330 DOI: 10.1016/J.Mod.2008.10.005 |
0.836 |
|
2008 |
Rogers CD, Archer TC, Cunningham DD, Grammer TC, Casey EM. Sox3 expression is maintained by FGF signaling and restricted to the neural plate by Vent proteins in the Xenopus embryo. Developmental Biology. 313: 307-19. PMID 18031719 DOI: 10.1016/J.Ydbio.2007.10.023 |
0.74 |
|
2008 |
Rogers CD, Cunningham DD, Casey EMS. Evolution of SoxB1 regulation and function: Neural development from marine worm to frog Developmental Biology. 319: 497. DOI: 10.1016/J.Ydbio.2008.05.106 |
0.496 |
|
2008 |
Rogers C, Archer T, Casey E. Distinct mechanisms drive the induction of Sox2 and Sox3 expression in neuroectoderm International Journal of Developmental Neuroscience. 26: 874. DOI: 10.1016/J.Ijdevneu.2008.09.147 |
0.774 |
|
2007 |
Rogers CD, Silva Casey EM. The regulation of SoxB1 genes during neural induction in Xenopus laevis Developmental Biology. 306: 347. DOI: 10.1016/J.Ydbio.2007.03.206 |
0.491 |
|
2006 |
Rogers C, Archer T, Grammer T, Casey ES. Regulation of SoxB1 genes in neural induction in Xenopus laevis Developmental Biology. 295: 372-373. DOI: 10.1016/J.Ydbio.2006.04.144 |
0.792 |
|
Show low-probability matches. |