Travis J. Williams, Ph.D. - Publications

Affiliations: 
Chemistry University of Southern California, Los Angeles, CA, United States 
Area:
Organometallic Chemistry
Website:
http://chem.usc.edu/faculty/Williams.html

91/500 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2024 Lu Z, Mitra D, Narayan SR, Williams TJ. An Immobilized (Carbene)Nickel Catalyst for Water Oxidation. Polyhedron. 252. PMID 38435834 DOI: 10.1016/j.poly.2024.116880  0.612
2023 Zhang L, Lu Z, Rander AR, Williams TJ. An ambient pressure, direct hydrogenation of ketones. Chemical Communications (Cambridge, England). 59: 8107-8110. PMID 37294535 DOI: 10.1039/d3cc01014g  0.543
2023 Nalikezhathu A, Tam A, Cherepakhin V, Do VK, Williams TJ. Synthesis of 1,4-Diazacycles by Hydrogen Borrowing. Organic Letters. PMID 36867725 DOI: 10.1021/acs.orglett.3c00468  0.382
2022 Do VK, Vargas NA, Chavez AJ, Zhang L, Cherepakhin V, Lu Z, Currier RP, Dub PA, Gordon JC, Williams TJ. Pressurized Formic Acid Dehydrogenation: An Entropic Spring Replaces Hydrogen Compression Cost. Catalysis Science & Technology. 12: 7182-7189. PMID 37192930 DOI: 10.1039/d2cy00676f  0.542
2020 Cherepakhin V, Hellman A, Lan Z, Mallikarjun Sharada S, Williams TJ. Heterobimetallic complexes of IrM (M = Fe, Co, and Ni) core and bridging 2-(diphenylphosphino)pyridine: electronic structure and electrochemical behavior. Dalton Transactions (Cambridge, England : 2003). 49: 10509-10515. PMID 32748911 DOI: 10.1039/D0Dt01801E  0.357
2020 Nalikezhathu A, Cherepakhin V, Williams TJ. Ruthenium Catalyzed Tandem Pictet-Spengler Reaction. Organic Letters. PMID 32558575 DOI: 10.1021/Acs.Orglett.0C01485  0.355
2020 Demianets I, Cherepakhin V, Maertens A, Lauridsen PJ, Sharada SM, Williams TJ. A New Mechanism of Metal-Ligand Cooperative Catalysis in Transfer Hydrogenation of Ketones. Polyhedron. 182. PMID 32410767 DOI: 10.1016/J.Poly.2020.114508  0.303
2020 Demianets I, Cherepakhin V, Maertens A, Lauridsen PJ, Sharada SM, Williams TJ. A New Mechanism of Metal-Ligand Cooperative Catalysis in Transfer Hydrogenation of Ketones. Polyhedron. 182. PMID 32410767 DOI: 10.1016/J.Poly.2020.114508  0.303
2020 Demianets I, Cherepakhin V, Maertens A, Lauridsen PJ, Sharada SM, Williams TJ. A New Mechanism of Metal-Ligand Cooperative Catalysis in Transfer Hydrogenation of Ketones. Polyhedron. 182. PMID 32410767 DOI: 10.1016/J.Poly.2020.114508  0.303
2020 Demianets I, Cherepakhin V, Maertens A, Lauridsen PJ, Sharada SM, Williams TJ. A New Mechanism of Metal-Ligand Cooperative Catalysis in Transfer Hydrogenation of Ketones. Polyhedron. 182. PMID 32410767 DOI: 10.1016/J.Poly.2020.114508  0.303
2020 Demianets I, Cherepakhin V, Maertens A, Lauridsen PJ, Sharada SM, Williams TJ. A New Mechanism of Metal-Ligand Cooperative Catalysis in Transfer Hydrogenation of Ketones. Polyhedron. 182. PMID 32410767 DOI: 10.1016/J.Poly.2020.114508  0.303
2020 Demianets I, Cherepakhin V, Maertens A, Lauridsen PJ, Sharada SM, Williams TJ. A New Mechanism of Metal-Ligand Cooperative Catalysis in Transfer Hydrogenation of Ketones. Polyhedron. 182. PMID 32410767 DOI: 10.1016/J.Poly.2020.114508  0.303
2020 Demianets I, Cherepakhin V, Maertens A, Lauridsen PJ, Sharada SM, Williams TJ. A New Mechanism of Metal-Ligand Cooperative Catalysis in Transfer Hydrogenation of Ketones. Polyhedron. 182. PMID 32410767 DOI: 10.1016/J.Poly.2020.114508  0.303
2020 Demianets I, Cherepakhin V, Maertens A, Lauridsen PJ, Sharada SM, Williams TJ. A New Mechanism of Metal-Ligand Cooperative Catalysis in Transfer Hydrogenation of Ketones. Polyhedron. 182. PMID 32410767 DOI: 10.1016/J.Poly.2020.114508  0.303
2020 Demianets I, Cherepakhin V, Maertens A, Lauridsen PJ, Sharada SM, Williams TJ. A New Mechanism of Metal-Ligand Cooperative Catalysis in Transfer Hydrogenation of Ketones. Polyhedron. 182. PMID 32410767 DOI: 10.1016/J.Poly.2020.114508  0.303
2020 Demianets I, Cherepakhin V, Maertens A, Lauridsen PJ, Sharada SM, Williams TJ. A New Mechanism of Metal-Ligand Cooperative Catalysis in Transfer Hydrogenation of Ketones. Polyhedron. 182. PMID 32410767 DOI: 10.1016/J.Poly.2020.114508  0.303
2020 Demianets I, Cherepakhin V, Maertens A, Lauridsen PJ, Sharada SM, Williams TJ. A New Mechanism of Metal-Ligand Cooperative Catalysis in Transfer Hydrogenation of Ketones. Polyhedron. 182. PMID 32410767 DOI: 10.1016/J.Poly.2020.114508  0.303
2020 Demianets I, Cherepakhin V, Maertens A, Lauridsen PJ, Sharada SM, Williams TJ. A New Mechanism of Metal-Ligand Cooperative Catalysis in Transfer Hydrogenation of Ketones. Polyhedron. 182. PMID 32410767 DOI: 10.1016/J.Poly.2020.114508  0.303
2020 Demianets I, Cherepakhin V, Maertens A, Lauridsen PJ, Sharada SM, Williams TJ. A New Mechanism of Metal-Ligand Cooperative Catalysis in Transfer Hydrogenation of Ketones. Polyhedron. 182. PMID 32410767 DOI: 10.1016/J.Poly.2020.114508  0.303
2020 Demianets I, Cherepakhin V, Maertens A, Lauridsen PJ, Sharada SM, Williams TJ. A New Mechanism of Metal-Ligand Cooperative Catalysis in Transfer Hydrogenation of Ketones. Polyhedron. 182. PMID 32410767 DOI: 10.1016/J.Poly.2020.114508  0.303
2020 Demianets I, Cherepakhin V, Maertens A, Lauridsen PJ, Sharada SM, Williams TJ. A New Mechanism of Metal-Ligand Cooperative Catalysis in Transfer Hydrogenation of Ketones. Polyhedron. 182. PMID 32410767 DOI: 10.1016/J.Poly.2020.114508  0.303
2020 Demianets I, Cherepakhin V, Maertens A, Lauridsen PJ, Sharada SM, Williams TJ. A New Mechanism of Metal-Ligand Cooperative Catalysis in Transfer Hydrogenation of Ketones. Polyhedron. 182. PMID 32410767 DOI: 10.1016/J.Poly.2020.114508  0.303
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/Acscatal.9B03679  0.37
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/Acs.Organomet.8B00778  0.43
2018 Lu Z, Cherepakhin V, Kapenstein T, Williams TJ. Upgrading Biodiesel from Vegetable Oils by Hydrogen Transfer to its Fatty Esters. Acs Sustainable Chemistry & Engineering. 6: 5749-5753. PMID 30319930 DOI: 10.1021/Acssuschemeng.8B00653  0.589
2018 Cherepakhin V, Williams TJ. Iridium Catalysts for Acceptorless Dehydrogenation of Alcohols to Carboxylic Acids: Scope and Mechanism. Acs Catalysis. 8: 3754-3763. PMID 30288338 DOI: 10.1021/Acscatal.8B00105  0.409
2018 Navarro CA, Kedzie EA, Ma Y, Michael KH, Nutt SR, Williams TJ. Mechanism and Catalysis of Oxidative Degradation of Fiber-Reinforced Epoxy Composites. Topics in Catalysis. 61: 704-709. PMID 30288016 DOI: 10.1007/S11244-018-0917-2  0.31
2018 Lauridsen PJ, Lu Z, Celaje JJA, Kedzie EA, Williams TJ. Conformational twisting of a formate-bridged diiridium complex enables catalytic formic acid dehydrogenation. Dalton Transactions (Cambridge, England : 2003). PMID 30206593 DOI: 10.1039/C8Dt03268H  0.784
2018 Lu Z, Cherepakhin V, Demianets I, Lauridsen PJ, Williams TJ. Iridium-based hydride transfer catalysts: from hydrogen storage to fine chemicals. Chemical Communications (Cambridge, England). PMID 29888372 DOI: 10.1039/C8Cc03412E  0.622
2017 Lee H, Feakins SJ, Lu Z, Schimmelmann A, Sessions AL, Tierney JE, Williams TJ. Comparison of three methods for the methylation of aliphatic and aromatic compounds. Rapid Communications in Mass Spectrometry : Rcm. PMID 28763166 DOI: 10.1002/Rcm.7947  0.526
2017 Celaje JJA, Zhang X, Zhang F, Kam L, Herron JR, Williams TJ. A Base and Solvent-Free Ruthenium-Catalyzed Alkylation of Amines Acs Catalysis. 7: 1136-1142. DOI: 10.1021/Acscatal.6B03088  0.836
2016 Zhang X, Kam L, Trerise R, Williams TJ. Ruthenium-Catalyzed Ammonia Borane Dehydrogenation: Mechanism and Utility. Accounts of Chemical Research. PMID 28032510 DOI: 10.1021/Acs.Accounts.6B00482  0.457
2016 Celaje JJ, Lu Z, Kedzie EA, Terrile NJ, Lo JN, Williams TJ. A prolific catalyst for dehydrogenation of neat formic acid. Nature Communications. 7: 11308. PMID 27076111 DOI: 10.1038/Ncomms11308  0.8
2016 Zhang X, Kam L, Williams TJ. Dehydrogenation of ammonia borane through the third equivalent of hydrogen. Dalton Transactions (Cambridge, England : 2003). PMID 27052687 DOI: 10.1039/C6Dt00604C  0.347
2016 Lu Z, Williams TJ. Di(carbene)-Supported Nickel Systems for CO2 Reduction under Ambient Conditions Acs Catalysis. 6: 6670-6673. DOI: 10.1021/Acscatal.6B02101  0.634
2016 Lu Z, Demianets I, Hamze R, Terrile NJ, Williams TJ. A Prolific Catalyst for Selective Conversion of Neat Glycerol to Lactic Acid Acs Catalysis. 6: 2014-2017. DOI: 10.1021/Acscatal.5B02732  0.622
2015 Zhang X, Lu Z, Foellmer LK, Williams TJ. Nitrogen-Based Ligands Accelerate Ammonia Borane Dehydrogenation with the Shvo Catalyst Organometallics. 34: 3732-3738. DOI: 10.1021/Acs.Organomet.5B00409  0.656
2014 Pennington-Boggio MK, Conley BL, Richmond MG, Williams TJ. Synthesis, Structure, and Conformational Dynamics of Rhodium and Iridium Complexes of Dimethylbis(2-pyridyl)borate. Polyhedron. 84: 24-31. PMID 25435645 DOI: 10.1016/J.Poly.2014.05.042  0.773
2014 Wu X, Dawsey AC, Siriwardena-Mahanama BN, Allen MJ, Williams TJ. A (Fluoroalkyl)Guanidine Modulates the Relaxivity of a Phosphonate-Containing T 1-Shortening Contrast Agent. Journal of Fluorine Chemistry. 168: 177-183. PMID 25431503 DOI: 10.1016/J.Jfluchem.2014.09.018  0.756
2014 Celaje JA, Pennington-Boggio MK, Flaig RW, Richmond MG, Williams TJ. Synthesis and Characterization of Dimethylbis(2-pyridyl)borate Nickel(II) Complexes: Unimolecular Square-Planar to Square-Planar Rotation around Nickel(II). Organometallics. 33: 2019-2026. PMID 24882919 DOI: 10.1021/Om500173J  0.754
2014 Krylova VA, Djurovich PI, Conley BL, Haiges R, Whited MT, Williams TJ, Thompson ME. Control of emission colour with N-heterocyclic carbene (NHC) ligands in phosphorescent three-coordinate Cu(I) complexes. Chemical Communications (Cambridge, England). 50: 7176-9. PMID 24853355 DOI: 10.1039/C4Cc02037E  0.742
2014 Lu Z, Williams TJ. A dual site catalyst for mild, selective nitrile reduction. Chemical Communications (Cambridge, England). 50: 5391-3. PMID 24409456 DOI: 10.1039/C3Cc47384H  0.653
2014 Li V, Ghang YJ, Hooley RJ, Williams TJ. Non-covalent self assembly controls the relaxivity of magnetically active guests. Chemical Communications (Cambridge, England). 50: 1375-7. PMID 24346341 DOI: 10.1039/C3Cc48389D  0.493
2013 Dawsey AC, Hathaway KL, Kim S, Williams TJ. Introductory Chemistry: A Molar Relaxivity Experiment in the High School Classroom. Journal of Chemical Education. 90: 922-925. PMID 23929983 DOI: 10.1021/Ed3006902  0.759
2013 Li V, Chang AY, Williams TJ. A noncovalent, fluoroalkyl coating monomer for phosphonate-covered nanoparticles. Tetrahedron. 69: 7741-7746. PMID 23913989 DOI: 10.1016/J.Tet.2013.05.092  0.482
2012 Lu Z, Conley BL, Williams TJ. A Three-Stage Mechanistic Model for Ammonia Borane Dehydrogenation by Shvo's Catalyst. Organometallics. 31: 6705-6714. PMID 23335832 DOI: 10.1021/Om300562D  0.818
2012 Pennington-Boggio MK, Conley BL, Williams TJ. A Ruthenium-Catalyzed Coupling of Alkynes with 1,3-Diketones. Journal of Organometallic Chemistry. 716: 6-10. PMID 22923850 DOI: 10.1016/J.Jorganchem.2012.05.017  0.815
2012 Dawsey AC, Li V, Hamilton KC, Wang J, Williams TJ. Copper-catalyzed oxidation of azolines to azoles. Dalton Transactions (Cambridge, England : 2003). 41: 7994-8002. PMID 22460353 DOI: 10.1039/C2Dt00025C  0.8
2012 Lu Z, Malinoski B, Flores AV, Conley BL, Guess D, Williams TJ. Alcohol dehydrogenation with a dual site ruthenium, Boron Catalyst occurs at ruthenium Catalysts. 2: 412-421. DOI: 10.3390/Catal2040412  0.786
2012 Wu X, Boz E, Sirkis AM, Chang AY, Williams TJ. Synthesis and phosphonate binding of guanidine-functionalized fluorinated amphiphiles Journal of Fluorine Chemistry. 135: 292-302. DOI: 10.1016/J.Jfluchem.2011.12.011  0.66
2011 Conley BL, Guess D, Williams TJ. A robust, air-stable, reusable ruthenium catalyst for dehydrogenation of ammonia borane. Journal of the American Chemical Society. 133: 14212-5. PMID 21827173 DOI: 10.1021/Ja2058154  0.759
2011 Williams TJ, Kershaw AD, Li V, Wu X. An Inversion Recovery NMR Kinetics Experiment. Journal of Chemical Education. 88: 665-669. PMID 21552343 DOI: 10.1021/Ed1006822  0.703
2011 Conley BL, Williams TJ. Dual site catalysts for hydride manipulation Comments On Inorganic Chemistry. 32: 195-218. DOI: 10.1080/02603594.2011.642087  0.777
2010 Conley BL, Williams TJ. Dehydrogenation of ammonia-borane by Shvo's catalyst. Chemical Communications (Cambridge, England). 46: 4815-7. PMID 20508879 DOI: 10.1039/C003157G  0.761
2010 Wender PA, Sirois LE, Stemmler RT, Williams TJ. Highly efficient, facile, room temperature intermolecular [5 + 2] cycloadditions catalyzed by cationic rhodium(I): one step to cycloheptenes and their libraries. Organic Letters. 12: 1604-7. PMID 20196579 DOI: 10.1021/Ol100337M  0.572
2010 Conley BL, Pennington-Boggio MK, Boz E, Williams TJ. Discovery, applications, and catalytic mechanisms of Shvo's catalyst. Chemical Reviews. 110: 2294-312. PMID 20095576 DOI: 10.1021/Cr9003133  0.784
2010 Conley BL, Williams TJ. Thermochemistry and molecular structure of a remarkable agostic interaction in a heterobifunctional ruthenium-boron complex. Journal of the American Chemical Society. 132: 1764-5. PMID 20088526 DOI: 10.1021/Ja909858A  0.737
2010 Wender PA, Bi FC, Gamber GG, Gosselin F, Hubbard RD, Scanio MJC, Sun R, Williams TJ, Zhang L. ChemInform Abstract: Toward the Ideal Synthesis: New Transition Metal catalyzed Reactions Inspired by Novel Medicinal Leads Cheminform. 33: no-no. DOI: 10.1002/chin.200241295  0.835
2010 Wender PA, Bi FC, Gamber GG, Gosselin F, Hubbard RD, Scanio MJC, Sun R, Williams TJ, Zhang L. ChemInform Abstract: Toward the Ideal Synthesis: New Transition Metal catalyzed Reactions Inspired by Novel Medicinal Leads Cheminform. 33: no-no. DOI: 10.1002/chin.200241295  0.835
2010 Wender PA, Bi FC, Gamber GG, Gosselin F, Hubbard RD, Scanio MJC, Sun R, Williams TJ, Zhang L. ChemInform Abstract: Toward the Ideal Synthesis: New Transition Metal catalyzed Reactions Inspired by Novel Medicinal Leads Cheminform. 33: no-no. DOI: 10.1002/chin.200241295  0.835
2010 Wender PA, Bi FC, Gamber GG, Gosselin F, Hubbard RD, Scanio MJC, Sun R, Williams TJ, Zhang L. ChemInform Abstract: Toward the Ideal Synthesis: New Transition Metal catalyzed Reactions Inspired by Novel Medicinal Leads Cheminform. 33: no-no. DOI: 10.1002/chin.200241295  0.835
2009 Thorson MK, Klinkel KL, Wang J, Williams TJ. Mechanism of hydride abstraction by cyclopentadienone-ligated carbonylmetal complexes (M = Ru, Fe) European Journal of Inorganic Chemistry. 295-302. DOI: 10.1002/Ejic.200800975  0.433
2008 Williams TJ, Caffyn AJ, Hazari N, Oblad PF, Labinger JA, Bercaw JE. C-H bond activation by air-stable [(diimine)M(II)(mu2-OH)]2(2+) dimers (M = Pd, Pt). Journal of the American Chemical Society. 130: 2418-9. PMID 18237167 DOI: 10.1021/Ja076740Q  0.79
2008 Bercaw JE, Hazari N, Williams TJ, Caffyn AJM, Oblad PF, Labinger JA. Carbon-hydrogen bond activation with platinum and palladium complexes Acs National Meeting Book of Abstracts 0.766
2007 Williams TJ, Labinger JA, Bercaw JE. Reactions of Indene and Indoles with Platinum Methyl Cations: Indene C-H Activation, Indole π vs. Nitrogen Lone-Pair Coordination. Organometallics. 26: 281-287. PMID 27087735 DOI: 10.1021/Om0606643  0.495
2007 Driver TG, Williams TJ, Labinger JA, Bercaw JE. C-H bond activation by dicationic platinum(II) complexes Organometallics. 26: 294-301. DOI: 10.1021/Om060792R  0.697
2007 Williams TJ, Labinger JA, Bercaw JE. Reactions of indene and indoles with platinum methyl cations: Indene C-H activation, indole π versus nitrogen lone-pair coordination Organometallics. 26: 281-287. DOI: 10.1021/om0606643  0.495
2006 Wender PA, Paxton TJ, Williams TJ. Cyclopentadienone synthesis by rhodium(I)-catalyzed [3 + 2] cycloaddition reactions of cyclopropenones and alkynes. Journal of the American Chemical Society. 128: 14814-5. PMID 17105285 DOI: 10.1021/Ja065868P  0.627
2006 Wender PA, Haustedt LO, Lim J, Love JA, Williams TJ, Yoon JY. Asymmetric catalysis of the [5 + 2] cycloaddition reaction of vinylcyclopropanes and pi-systems. Journal of the American Chemical Society. 128: 6302-3. PMID 16683779 DOI: 10.1021/Ja058590U  0.741
2006 Wender P, Haustedt L, Lim J, Love J, Williams T, Yoon J. Asymmetric [5+2] Cycloaddition of Vinylcyclopropanes and π-Systems Synfacts. 2006: 0809-0809. DOI: 10.1055/S-2006-942016  0.604
2006 Wender P, Haustedt L, Lim J, Love J, Williams T, Yoon J. Asymmetric [5+2] Cycloaddition of Vinylcyclopropanes and π-Systems Synfacts. 2006: 0809-0809. DOI: 10.1055/S-2006-942016  0.604
2006 Wender P, Haustedt L, Lim J, Love J, Williams T, Yoon J. Asymmetric [5+2] Cycloaddition of Vinylcyclopropanes and π-Systems Synfacts. 2006: 0809-0809. DOI: 10.1055/S-2006-942016  0.604
2006 Wender P, Haustedt L, Lim J, Love J, Williams T, Yoon J. Asymmetric [5+2] Cycloaddition of Vinylcyclopropanes and π-Systems Synfacts. 2006: 0809-0809. DOI: 10.1055/S-2006-942016  0.604
2005 Wender PA, Gamber GG, Williams TJ. Rhodium(I)-Catalyzed [5+2], [6+2], and [5+2+1] Cycloadditions: New Reactions for Organic Synthesis Modern Rhodium-Catalyzed Organic Reactions. 263-299. DOI: 10.1002/3527604693.ch13  0.823
2004 Wender PA, Deschamps NM, Williams TJ. Intermolecular dienyl Pauson-Khand reaction. Angewandte Chemie (International Ed. in English). 43: 3076-9. PMID 15188486 DOI: 10.1002/Anie.200454117  0.809
2003 Wender PA, Baryza JL, Brenner SE, Clarke MO, Gamber GG, Horan JC, Jessop TC, Kan C, Pattabiraman K, Williams TJ. Inspirations from nature. New reactions, new therapeutic leads, and new drug delivery systems Pure and Applied Chemistry. 75: 143-155. DOI: 10.1351/Pac200375020143  0.772
2003 Wender PA, Love JA, Williams TJ. Rhodium-catalyzed [5+2] cycloaddition reactions in water Synlett. 1295-1298. DOI: 10.1055/S-2003-40357  0.717
2003 Wender PA, Baryza JL, Brenner SE, Clarke MO, Gamber GG, Horan JC, Jessop TC, Kan C, Pattabiraman K, Williams TJ. Inspirations from nature. New reactions, therapeutic leads, and drug delivery systems Pure and Applied Chemistry. 75: 143-155.  0.755
2002 Wender PA, Williams TJ. [(arene)Rh(cod)]+ Complexes as catalysts for [5+2] cycloaddition reactions. Angewandte Chemie (International Ed. in English). 41: 4550-3. PMID 12458535 DOI: 10.1002/1521-3773(20021202)41:23<4550::Aid-Anie4550>3.0.Co;2-D  0.635
2002 Wender PA, Bi FC, Gamber GG, Gosselin F, Hubbard RD, Scanio MJC, Sun R, Williams TJ, Zhang L. Toward the ideal synthesis. New transition metal-catalyzed reactions inspired by novel medicinal leads Pure and Applied Chemistry. 74: 25-31. DOI: 10.1351/Pac200274010025  0.851
2002 Wender PA, Bi FC, Gamber GG, Gosselin F, Hubbard RD, Scanio MJC, Sun R, Williams TJ, Zhang L. Toward the ideal synthesis. New transition metal-catalyzed reactions inspired by novel medicinal leads Pure and Applied Chemistry. 74: 25-31. DOI: 10.1351/pac200274010025  0.857
2002 Wender PA, Bi FC, Gamber GG, Gosselin F, Hubbard RD, Scanio MJC, Sun R, Williams TJ, Zhang L. Toward the ideal synthesis. New transition metal-catalyzed reactions inspired by novel medicinal leads Pure and Applied Chemistry. 74: 25-31. DOI: 10.1351/pac200274010025  0.857
2002 Wender PA, Bi FC, Gamber GG, Gosselin F, Hubbard RD, Scanio MJC, Sun R, Williams TJ, Zhang L. Toward the ideal synthesis. New transition metal-catalyzed reactions inspired by novel medicinal leads Pure and Applied Chemistry. 74: 25-31. DOI: 10.1351/pac200274010025  0.857
2002 Wender PA, Bi FC, Gamber GG, Gosselin F, Hubbard RD, Scanio MJC, Sun R, Williams TJ, Zhang L. Toward the ideal synthesis. New transition metal-catalyzed reactions inspired by novel medicinal leads Pure and Applied Chemistry. 74: 25-31. DOI: 10.1351/pac200274010025  0.857
2002 Wender PA, Bi FC, Gamber GG, Gosselin F, Hubbard RD, Scanio MJC, Sun R, Williams TJ, Zhang L. Toward the ideal synthesis. New transition metal-catalyzed reactions inspired by novel medicinal leads Pure and Applied Chemistry. 74: 25-31. DOI: 10.1351/pac200274010025  0.857
2002 Wender PA, Bi FC, Gamber GG, Gosselin F, Hubbard RD, Scanio MJC, Sun R, Williams TJ, Zhang L. Toward the ideal synthesis. New transition metal-catalyzed reactions inspired by novel medicinal leads Pure and Applied Chemistry. 74: 25-31. DOI: 10.1351/pac200274010025  0.857
2002 Wender PA, Bi FC, Gamber GG, Gosselin F, Hubbard RD, Scanio MJC, Sun R, Williams TJ, Zhang L. Toward the ideal synthesis. New transition metal-catalyzed reactions inspired by novel medicinal leads Pure and Applied Chemistry. 74: 25-31. DOI: 10.1351/pac200274010025  0.857
2002 Wender PA, Bi FC, Gamber GG, Gosselin F, Hubbard RD, Scanio MJC, Sun R, Williams TJ, Zhang L. Toward the ideal synthesis. New transition metal-catalyzed reactions inspired by novel medicinal leads Pure and Applied Chemistry. 74: 25-31. DOI: 10.1351/pac200274010025  0.857
2002 Wender PA, Bi FC, Gamber GG, Gosselin F, Hubbard RD, Scanio MJC, Sun R, Williams TJ, Zhang L. Toward the ideal synthesis. New transition metal-catalyzed reactions inspired by novel medicinal leads Pure and Applied Chemistry. 74: 25-31. DOI: 10.1351/pac200274010025  0.857
2002 Wender PA, Bi FC, Gamber GG, Gosselin F, Hubbard RD, Scanio MJC, Sun R, Williams TJ, Zhang L. Toward the ideal synthesis. New transition metal-catalyzed reactions inspired by novel medicinal leads Pure and Applied Chemistry. 74: 25-31. DOI: 10.1351/pac200274010025  0.857
2002 Wender PA, Bi FC, Gamber GG, Gosselin F, Hubbard RD, Scanio MJC, Sun R, Williams TJ, Zhang L. Toward the ideal synthesis. New transition metal-catalyzed reactions inspired by novel medicinal leads Pure and Applied Chemistry. 74: 25-31. DOI: 10.1351/pac200274010025  0.857
Low-probability matches (unlikely to be authored by this person)
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/Acssuschemeng.8B01790  0.277
2020 Smock SR, Tabatabaei K, Williams TJ, Kauzlarich SM, Brutchey RL. Surface coordination chemistry of germanium nanocrystals synthesized by microwave-assisted reduction in oleylamine. Nanoscale. 12: 2764-2772. PMID 31956879 DOI: 10.1039/C9Nr09233A  0.275
2022 Kim E, Cardosa GB, Stanley KE, Williams TJ, McCurry DL. Out of Thin Air? Catalytic Oxidation of Trace Aqueous Aldehydes with Ambient Dissolved Oxygen. Environmental Science & Technology. PMID 35671187 DOI: 10.1021/acs.est.2c00192  0.263
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/J.Polymdegradstab.2020.109125  0.25
2020 McCullough K, Williams T, Mingle K, Jamshidi P, Lauterbach J. High-throughput experimentation meets artificial intelligence: a new pathway to catalyst discovery. Physical Chemistry Chemical Physics : Pccp. PMID 32393932 DOI: 10.1039/D0Cp00972E  0.248
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.244
2017 Celaje JJA, Zhang X, Zhang F, Kam L, Herron JR, Williams TJ. A Base and Solvent-Free Ruthenium-Catalyzed Alkylation of Amines Acs Catalysis. 7: 1136-1142. DOI: 10.1021/acscatal.6b03088  0.243
2017 Celaje JJA, Zhang X, Zhang F, Kam L, Herron JR, Williams TJ. A Base and Solvent-Free Ruthenium-Catalyzed Alkylation of Amines Acs Catalysis. 7: 1136-1142. DOI: 10.1021/acscatal.6b03088  0.243
2017 Celaje JJA, Zhang X, Zhang F, Kam L, Herron JR, Williams TJ. A Base and Solvent-Free Ruthenium-Catalyzed Alkylation of Amines Acs Catalysis. 7: 1136-1142. DOI: 10.1021/acscatal.6b03088  0.243
2017 Celaje JJA, Zhang X, Zhang F, Kam L, Herron JR, Williams TJ. A Base and Solvent-Free Ruthenium-Catalyzed Alkylation of Amines Acs Catalysis. 7: 1136-1142. DOI: 10.1021/acscatal.6b03088  0.243
2017 Celaje JJA, Zhang X, Zhang F, Kam L, Herron JR, Williams TJ. A Base and Solvent-Free Ruthenium-Catalyzed Alkylation of Amines Acs Catalysis. 7: 1136-1142. DOI: 10.1021/acscatal.6b03088  0.243
2017 Celaje JJA, Zhang X, Zhang F, Kam L, Herron JR, Williams TJ. A Base and Solvent-Free Ruthenium-Catalyzed Alkylation of Amines Acs Catalysis. 7: 1136-1142. DOI: 10.1021/acscatal.6b03088  0.243
2017 Celaje JJA, Zhang X, Zhang F, Kam L, Herron JR, Williams TJ. A Base and Solvent-Free Ruthenium-Catalyzed Alkylation of Amines Acs Catalysis. 7: 1136-1142. DOI: 10.1021/acscatal.6b03088  0.243
2017 Celaje JJA, Zhang X, Zhang F, Kam L, Herron JR, Williams TJ. A Base and Solvent-Free Ruthenium-Catalyzed Alkylation of Amines Acs Catalysis. 7: 1136-1142. DOI: 10.1021/acscatal.6b03088  0.243
2017 Celaje JJA, Zhang X, Zhang F, Kam L, Herron JR, Williams TJ. A Base and Solvent-Free Ruthenium-Catalyzed Alkylation of Amines Acs Catalysis. 7: 1136-1142. DOI: 10.1021/acscatal.6b03088  0.243
2017 Celaje JJA, Zhang X, Zhang F, Kam L, Herron JR, Williams TJ. A Base and Solvent-Free Ruthenium-Catalyzed Alkylation of Amines Acs Catalysis. 7: 1136-1142. DOI: 10.1021/acscatal.6b03088  0.243
2017 Celaje JJA, Zhang X, Zhang F, Kam L, Herron JR, Williams TJ. A Base and Solvent-Free Ruthenium-Catalyzed Alkylation of Amines Acs Catalysis. 7: 1136-1142. DOI: 10.1021/acscatal.6b03088  0.243
2017 Celaje JJA, Zhang X, Zhang F, Kam L, Herron JR, Williams TJ. A Base and Solvent-Free Ruthenium-Catalyzed Alkylation of Amines Acs Catalysis. 7: 1136-1142. DOI: 10.1021/acscatal.6b03088  0.243
2017 Celaje JJA, Zhang X, Zhang F, Kam L, Herron JR, Williams TJ. A Base and Solvent-Free Ruthenium-Catalyzed Alkylation of Amines Acs Catalysis. 7: 1136-1142. DOI: 10.1021/acscatal.6b03088  0.243
2017 Celaje JJA, Zhang X, Zhang F, Kam L, Herron JR, Williams TJ. A Base and Solvent-Free Ruthenium-Catalyzed Alkylation of Amines Acs Catalysis. 7: 1136-1142. DOI: 10.1021/acscatal.6b03088  0.243
2017 Celaje JJA, Zhang X, Zhang F, Kam L, Herron JR, Williams TJ. A Base and Solvent-Free Ruthenium-Catalyzed Alkylation of Amines Acs Catalysis. 7: 1136-1142. DOI: 10.1021/acscatal.6b03088  0.243
2017 Celaje JJA, Zhang X, Zhang F, Kam L, Herron JR, Williams TJ. A Base and Solvent-Free Ruthenium-Catalyzed Alkylation of Amines Acs Catalysis. 7: 1136-1142. DOI: 10.1021/acscatal.6b03088  0.243
2017 Celaje JJA, Zhang X, Zhang F, Kam L, Herron JR, Williams TJ. A Base and Solvent-Free Ruthenium-Catalyzed Alkylation of Amines Acs Catalysis. 7: 1136-1142. DOI: 10.1021/acscatal.6b03088  0.243
2017 Celaje JJA, Zhang X, Zhang F, Kam L, Herron JR, Williams TJ. A Base and Solvent-Free Ruthenium-Catalyzed Alkylation of Amines Acs Catalysis. 7: 1136-1142. DOI: 10.1021/acscatal.6b03088  0.243
2018 Smock SR, Williams TJ, Brutchey RL. Quantifying the Thermodynamics of Ligand Binding to CsPbBr₃ Quantum Dots. Angewandte Chemie (International Ed. in English). PMID 30051545 DOI: 10.1002/Anie.201806916  0.243
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2019 Cherepakhin V, Williams TJ. Catalyst Evolution in Ruthenium-Catalyzed Coupling of Amines and Alcohols Acs Catalysis. 10: 56-65. DOI: 10.1021/acscatal.9b03679  0.241
2018 Coricello A, Adams JD, Lien E, Nguyen C, Perri F, Williams TJ, Aiello F. A Walk in Nature. Sesquiterpene Lactones as Multi-Target Agents Involved in Inflammatory Pathways. Current Medicinal Chemistry. PMID 30027844 DOI: 10.2174/0929867325666180719111123  0.234
2016 Lu Z, Demianets I, Hamze R, Terrile NJ, Williams TJ. A Prolific Catalyst for Selective Conversion of Neat Glycerol to Lactic Acid Acs Catalysis. 6: 2014-2017. DOI: 10.1021/acscatal.5b02732  0.233
2016 Lu Z, Demianets I, Hamze R, Terrile NJ, Williams TJ. A Prolific Catalyst for Selective Conversion of Neat Glycerol to Lactic Acid Acs Catalysis. 6: 2014-2017. DOI: 10.1021/acscatal.5b02732  0.233
2016 Lu Z, Demianets I, Hamze R, Terrile NJ, Williams TJ. A Prolific Catalyst for Selective Conversion of Neat Glycerol to Lactic Acid Acs Catalysis. 6: 2014-2017. DOI: 10.1021/acscatal.5b02732  0.233
2016 Lu Z, Demianets I, Hamze R, Terrile NJ, Williams TJ. A Prolific Catalyst for Selective Conversion of Neat Glycerol to Lactic Acid Acs Catalysis. 6: 2014-2017. DOI: 10.1021/acscatal.5b02732  0.233
2016 Lu Z, Demianets I, Hamze R, Terrile NJ, Williams TJ. A Prolific Catalyst for Selective Conversion of Neat Glycerol to Lactic Acid Acs Catalysis. 6: 2014-2017. DOI: 10.1021/acscatal.5b02732  0.233
2016 Lu Z, Demianets I, Hamze R, Terrile NJ, Williams TJ. A Prolific Catalyst for Selective Conversion of Neat Glycerol to Lactic Acid Acs Catalysis. 6: 2014-2017. DOI: 10.1021/acscatal.5b02732  0.233
2016 Lu Z, Demianets I, Hamze R, Terrile NJ, Williams TJ. A Prolific Catalyst for Selective Conversion of Neat Glycerol to Lactic Acid Acs Catalysis. 6: 2014-2017. DOI: 10.1021/acscatal.5b02732  0.233
2016 Lu Z, Demianets I, Hamze R, Terrile NJ, Williams TJ. A Prolific Catalyst for Selective Conversion of Neat Glycerol to Lactic Acid Acs Catalysis. 6: 2014-2017. DOI: 10.1021/acscatal.5b02732  0.233
2016 Lu Z, Demianets I, Hamze R, Terrile NJ, Williams TJ. A Prolific Catalyst for Selective Conversion of Neat Glycerol to Lactic Acid Acs Catalysis. 6: 2014-2017. DOI: 10.1021/acscatal.5b02732  0.233
2016 Lu Z, Demianets I, Hamze R, Terrile NJ, Williams TJ. A Prolific Catalyst for Selective Conversion of Neat Glycerol to Lactic Acid Acs Catalysis. 6: 2014-2017. DOI: 10.1021/acscatal.5b02732  0.233
2016 Lu Z, Demianets I, Hamze R, Terrile NJ, Williams TJ. A Prolific Catalyst for Selective Conversion of Neat Glycerol to Lactic Acid Acs Catalysis. 6: 2014-2017. DOI: 10.1021/acscatal.5b02732  0.233
2016 Lu Z, Demianets I, Hamze R, Terrile NJ, Williams TJ. A Prolific Catalyst for Selective Conversion of Neat Glycerol to Lactic Acid Acs Catalysis. 6: 2014-2017. DOI: 10.1021/acscatal.5b02732  0.233
2016 Lu Z, Demianets I, Hamze R, Terrile NJ, Williams TJ. A Prolific Catalyst for Selective Conversion of Neat Glycerol to Lactic Acid Acs Catalysis. 6: 2014-2017. DOI: 10.1021/acscatal.5b02732  0.233
2016 Lu Z, Demianets I, Hamze R, Terrile NJ, Williams TJ. A Prolific Catalyst for Selective Conversion of Neat Glycerol to Lactic Acid Acs Catalysis. 6: 2014-2017. DOI: 10.1021/acscatal.5b02732  0.233
2016 Lu Z, Demianets I, Hamze R, Terrile NJ, Williams TJ. A Prolific Catalyst for Selective Conversion of Neat Glycerol to Lactic Acid Acs Catalysis. 6: 2014-2017. DOI: 10.1021/acscatal.5b02732  0.233
2016 Lu Z, Demianets I, Hamze R, Terrile NJ, Williams TJ. A Prolific Catalyst for Selective Conversion of Neat Glycerol to Lactic Acid Acs Catalysis. 6: 2014-2017. DOI: 10.1021/acscatal.5b02732  0.233
2016 Lu Z, Demianets I, Hamze R, Terrile NJ, Williams TJ. A Prolific Catalyst for Selective Conversion of Neat Glycerol to Lactic Acid Acs Catalysis. 6: 2014-2017. DOI: 10.1021/acscatal.5b02732  0.233
2016 Lu Z, Demianets I, Hamze R, Terrile NJ, Williams TJ. A Prolific Catalyst for Selective Conversion of Neat Glycerol to Lactic Acid Acs Catalysis. 6: 2014-2017. DOI: 10.1021/acscatal.5b02732  0.233
2016 Lu Z, Demianets I, Hamze R, Terrile NJ, Williams TJ. A Prolific Catalyst for Selective Conversion of Neat Glycerol to Lactic Acid Acs Catalysis. 6: 2014-2017. DOI: 10.1021/acscatal.5b02732  0.233
2015 Williams TJ, Bray JTW, Lake BRM, Willans CE, Rajabi NA, Ariafard A, Manzini C, Bellina F, Whitwood AC, Fairlamb IJS. Mechanistic Elucidation of the Arylation of Non-Spectator N-Heterocyclic Carbenes at Copper Using a Combined Experimental and Computational Approach Organometallics. 34: 3497-3507. DOI: 10.1021/Acs.Organomet.5B00093  0.229
2013 Williams TJ, Fairlamb IJS. A key role for iodobenzene in the direct C-H bond functionalisation of benzoxazoles using PhI(OAc)2 mediated by a Pd(OAc) 2/1,10-phenanthroline catalyst system: In situ formation of well-defined Pd nanoparticles Tetrahedron Letters. 54: 2906-2908. DOI: 10.1016/J.Tetlet.2013.03.018  0.226
2015 Daramola JO, Adekunle EO, Oke OE, Onagbesan OM, Iyasere OS, Williams TJ, James IJ, Oyewusi IK, Oyewusi JA. Effects of pyridoxine supplementation or in combination with other antioxidants on motility, in vitro capacitation and acrosome reaction of goat buck spermatozoa during cryopreservation Small Ruminant Research. DOI: 10.1016/j.smallrumres.2015.08.007  0.225
2015 Baumann CG, De Ornellas S, Reeds JP, Storr TE, Williams TJ, Fairlamb IJS. Formation and propagation of well-defined Pd nanoparticles (PdNPs) during C-H bond functionalization of heteroarenes: Are nanoparticles a moribund form of Pd or an active catalytic species? Tetrahedron. 70: 6174-6187. DOI: 10.1016/J.Tet.2014.06.002  0.219
2020 Navarro CA, Giffin CR, Zhang B, Yu Z, Nutt SR, Williams TJ. A structural chemistry look at composites recycling Materials Horizons. DOI: 10.1039/D0Mh01085E  0.218
2014 Williams TJ, Greaney MF. Mild chlorodifluoroacylation of indoles via self-activation of sodium chlorodifluoroacetate. Organic Letters. 16: 4024-7. PMID 25025404 DOI: 10.1021/Ol501854Q  0.205
2012 Lake BR, Bullough EK, Williams TJ, Whitwood AC, Little MA, Willans CE. Simple and versatile selective synthesis of neutral and cationic copper(I) N-heterocyclic carbene complexes using an electrochemical procedure. Chemical Communications (Cambridge, England). 48: 4887-9. PMID 22498755 DOI: 10.1039/C2Cc30862B  0.2
2015 Reay AJ, Williams TJ, Fairlamb IJ. Unified mild reaction conditions for C2-selective Pd-catalysed tryptophan arylation, including tryptophan-containing peptides. Organic & Biomolecular Chemistry. 13: 8298-309. PMID 26146008 DOI: 10.1039/C5Ob01174D  0.2
2022 Koskela KM, Quiton SJ, Sharada SM, Williams TJ, Brutchey RL. Kinetics and mechanistic details of bulk ZnO dissolution using a thiol-imidazole system. Chemical Science. 13: 3208-3215. PMID 35414876 DOI: 10.1039/d1sc06667f  0.192
2018 Ren F, Ward L, Williams T, Laws KJ, Wolverton C, Hattrick-Simpers J, Mehta A. Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments. Science Advances. 4: eaaq1566. PMID 29662953 DOI: 10.1126/Sciadv.Aaq1566  0.19
2015 Reay AJ, Williams TJ, Fairlamb IJS. Unified mild reaction conditions for C2-selective Pd-catalysed tryptophan arylation, including tryptophan-containing peptides Organic and Biomolecular Chemistry. 13: 8298-8309. DOI: 10.1039/c5ob01174d  0.183
2011 Serrano JL, García L, Pérez J, Pérez E, García J, Sánchez G, Sehnal P, De Ornellas S, Williams TJ, Fairlamb IJS. Synthesis and characterization of imine-palladacycles containing imidate "pseudohalide" ligands: Efficient Suzuki-Miyaura cross-coupling precatalysts and their activation to give Pd0Ln species (L = Phosphine) Organometallics. 30: 5095-5109. DOI: 10.1021/Om2002443  0.177
2022 Rabot C, Chen Y, Bijlani S, Chiang YM, Oakley CE, Oakley BR, Williams TJ, Wang CCC. Conversion of Polyethylenes into Fungal Secondary Metabolites. Angewandte Chemie (International Ed. in English). e202214609. PMID 36417558 DOI: 10.1002/anie.202214609  0.172
2023 Rabot C, Chen Y, Lin SY, Miller B, Chiang YM, Oakley CE, Oakley BR, Wang CCC, Williams TJ. Polystyrene Upcycling into Fungal Natural Products and a Biocontrol Agent. Journal of the American Chemical Society. PMID 36779837 DOI: 10.1021/jacs.2c12285  0.155
1995 Shen H, Williams TJ, Bott SG, Richmond MG. Ligand substitution of the redox-active diphosphine 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) in the alkynyl-bridged cluster Ru3(CO)9(μ2-H)(μ3-ν 2-CCtBu). Synthesis, X-ray structure and electrochemical properties of .. Journal of Organometallic Chemistry. 505: 1-9.  0.139
2014 Williams TJ, Reay AJ, Whitwood AC, Fairlamb IJ. A mild and selective Pd-mediated methodology for the synthesis of highly fluorescent 2-arylated tryptophans and tryptophan-containing peptides: a catalytic role for Pd(0) nanoparticles? Chemical Communications (Cambridge, England). 50: 3052-4. PMID 24516861 DOI: 10.1039/C3Cc48481E  0.135
1995 Shen H, Williams TJ, Bott SG, Richmond MG. Ligand substitution of the redox-active diphosphine 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) in the alkynyl-bridged cluster.... Journal of Organometallic Chemistry. 505: 1-9. DOI: 10.1016/0022-328X(95)05564-1  0.128
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2018 Lo JN, Nutt SR, Williams TJ. Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation Acs Sustainable Chemistry & Engineering. 6: 7227-7231. DOI: 10.1021/acssuschemeng.8b01790  0.12
2011 Deng Z, Jin CQ, Liu QQ, Wang XC, Zhu JL, Feng SM, Chen LC, Yu RC, Arguello C, Goko T, Ning F, Zhang J, Wang Y, Aczel AA, Munsie T, ... Williams TJ, et al. Li(Zn,Mn)As as a new generation ferromagnet based on a I-II-V semiconductor. Nature Communications. 2: 422. PMID 21829184 DOI: 10.1038/Ncomms1425  0.117
2011 Pilak O, Harrop SJ, Siddiqui KS, Chong K, De Francisci D, Burg D, Williams TJ, Cavicchioli R, Curmi PM. Chaperonins from an Antarctic archaeon are predominantly monomeric: crystal structure of an open state monomer. Environmental Microbiology. 13: 2232-49. PMID 21477108 DOI: 10.1111/j.1462-2920.2011.02477.x  0.115
2013 Chatterjee S, Trinckauf J, Hänke T, Shai DE, Harter JW, Williams TJ, Luke GM, Shen KM, Geck J. Formation of the coherent heavy fermion liquid at the hidden order transition in URu2Si2. Physical Review Letters. 110: 186401. PMID 23683224 DOI: 10.1103/Physrevlett.110.186401  0.114
2010 Williams TJ, Burg DW, Ertan H, Raftery MJ, Poljak A, Guilhaus M, Cavicchioli R. Global proteomic analysis of the insoluble, soluble, and supernatant fractions of the psychrophilic archaeon Methanococcoides burtonii. Part II: the effect of different methylated growth substrates. Journal of Proteome Research. 9: 653-63. PMID 19947665 DOI: 10.1021/pr9005102  0.109
2013 Kapdi AR, Whitwood AC, Williamson DC, Lynam JM, Burns MJ, Williams TJ, Reay AJ, Holmes J, Fairlamb IJ. The elusive structure of Pd2(dba)3. Examination by isotopic labeling, NMR spectroscopy, and X-ray diffraction analysis: synthesis and characterization of Pd2(dba-Z)3 complexes. Journal of the American Chemical Society. 135: 8388-99. PMID 23701049 DOI: 10.1021/Ja403259C  0.107
2015 Hayes J, Schimel J, Williams TJ, Howard AL, Webber D, Faucher EH. Worldview Accommodation: Selectively Modifying Committed Beliefs Provides Defense Against Worldview Threat Self and Identity. DOI: 10.1080/15298868.2015.1036919  0.106
2010 Ng C, DeMaere MZ, Williams TJ, Lauro FM, Raftery M, Gibson JA, Andrews-Pfannkoch C, Lewis M, Hoffman JM, Thomas T, Cavicchioli R. Metaproteogenomic analysis of a dominant green sulfur bacterium from Ace Lake, Antarctica. The Isme Journal. 4: 1002-19. PMID 20237513 DOI: 10.1038/Ismej.2010.28  0.1
2023 Yu Z, Lim YJ, Williams T, Nutt S. A rapid electrochemical method to recycle carbon fiber composites using methyl radicals. Green Chemistry : An International Journal and Green Chemistry Resource : Gc. 25: 7058-7061. PMID 38343892 DOI: 10.1039/d3gc01765f  0.086
2013 Wilkins D, Lauro FM, Williams TJ, Demaere MZ, Brown MV, Hoffman JM, Andrews-Pfannkoch C, McQuaid JB, Riddle MJ, Rintoul SR, Cavicchioli R. Biogeographic partitioning of Southern Ocean microorganisms revealed by metagenomics. Environmental Microbiology. 15: 1318-33. PMID 23199136 DOI: 10.1111/1462-2920.12035  0.086
2012 Deng Z, Liu QQ, Wang XC, Zhu JL, Feng SM, Chen LC, Yu RC, Arguello C, Goko T, Ning FL, Zhang JS, Wang YY, Aczel AA, Munsie T, Williams TJ, et al. A new type diluted magnetic semiconductor Li(Zn,Mn)As Journal of Physics: Conference Series. 400. DOI: 10.1088/1742-6596/400/3/032033  0.086
2012 Bajwa SE, Storr TE, Hatcher LE, Williams TJ, Baumann CG, Whitwood AC, Allan DR, Teat SJ, Raithby PR, Fairlamb IJS. On the appearance of nitrite anion in [PdX(OAc)L 2] and [Pd(X)(C∧N)L] syntheses (X = OAc or NO 2): Photocrystallographic identification of metastable Pd(η 1-ONO)(C∧N)PPh 3 Chemical Science. 3: 1656-1661. DOI: 10.1039/C2Sc01050J  0.084
2013 Yau S, Lauro FM, Williams TJ, Demaere MZ, Brown MV, Rich J, Gibson JA, Cavicchioli R. Metagenomic insights into strategies of carbon conservation and unusual sulfur biogeochemistry in a hypersaline Antarctic lake. The Isme Journal. 7: 1944-61. PMID 23619305 DOI: 10.1038/Ismej.2013.69  0.081
2010 Ting L, Williams TJ, Cowley MJ, Lauro FM, Guilhaus M, Raftery MJ, Cavicchioli R. Cold adaptation in the marine bacterium, Sphingopyxis alaskensis, assessed using quantitative proteomics. Environmental Microbiology. 12: 2658-76. PMID 20482592 DOI: 10.1111/J.1462-2920.2010.02235.X  0.078
2012 Nagel U, Uleksin T, Rõõm T, Lobo RP, Lejay P, Homes CC, Hall JS, Kinross AW, Purdy SK, Munsie T, Williams TJ, Luke GM, Timusk T. Optical spectroscopy shows that the normal state of URu2Si2 is an anomalous Fermi liquid. Proceedings of the National Academy of Sciences of the United States of America. 109: 19161-5. PMID 23115333 DOI: 10.1073/Pnas.1208249109  0.074
2008 Tsujimoto Y, Kageyama H, Baba Y, Kitada A, Yamamoto T, Narumi Y, Kindo K, Nishi M, Carlo JP, Aczel AA, Williams TJ, Goko T, Luke GM, Uemura YJ, Ueda Y, et al. Synthesis, structure, and magnetic properties of the two-dimensional quantum antiferromagnets (CuBr) A2 B3 O10 (A=Ca, Sr, Ba, Pb; B=Nb, Ta) with the 1/3 magnetization plateau Physical Review B - Condensed Matter and Materials Physics. 78. DOI: 10.1103/Physrevb.78.214410  0.073
2019 Onsree T, Tippayawong N, Williams T, McCullough K, Barrow E, Pogaku R, Lauterbach J. Torrefaction of pelletized corn residues with wet flue gas. Bioresource Technology. 285: 121330. PMID 31004944 DOI: 10.1016/J.Biortech.2019.121330  0.07
2014 Luk AW, Williams TJ, Erdmann S, Papke RT, Cavicchioli R. Viruses of haloarchaea. Life (Basel, Switzerland). 4: 681-715. PMID 25402735 DOI: 10.3390/life4040681  0.07
2015 Casto LD, Clune AJ, Yokosuk MO, Musfeldt JL, Williams TJ, Zhuang HL, Lin MW, Xiao K, Hennig RG, Sales BC, Yan JQ, Mandrus D. Strong spin-lattice coupling in CrSiTe3 Apl Materials. 3. DOI: 10.1063/1.4914134  0.07
2012 Williams TJ, Long E, Evans F, Demaere MZ, Lauro FM, Raftery MJ, Ducklow H, Grzymski JJ, Murray AE, Cavicchioli R. A metaproteomic assessment of winter and summer bacterioplankton from Antarctic Peninsula coastal surface waters. The Isme Journal. 6: 1883-900. PMID 22534610 DOI: 10.1038/ismej.2012.28  0.069
2023 Williams TJ, MacDougall GJ, Riemer BW, Gallmeier FX, Dela Cruz CR, Louca D. SEEMS: A Single Event Effects and Muon Spectroscopy facility at the Spallation Neutron Source. The Review of Scientific Instruments. 94: 033908. PMID 37012810 DOI: 10.1063/5.0135721  0.069
2009 Williams TJ, Ertan H, Ting L, Cavicchioli R. Carbon and nitrogen substrate utilization in the marine bacterium Sphingopyxis alaskensis strain RB2256. The Isme Journal. 3: 1036-52. PMID 19458655 DOI: 10.1038/ismej.2009.52  0.068
2012 Carlo JP, Goko T, Gat-Malureanu IM, Russo PL, Savici AT, Aczel AA, MacDougall GJ, Rodriguez JA, Williams TJ, Luke GM, Wiebe CR, Yoshida Y, Nakatsuji S, Maeno Y, Taniguchi T, et al. New magnetic phase diagram of (Sr,Ca)2RuO4. Nature Materials. 11: 323-8. PMID 22344326 DOI: 10.1038/Nmat3236  0.068
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2019 Demianets I, Hunt JR, Dawlaty JM, Williams TJ. Optical pKa Control in a Bifunctional Iridium Complex Organometallics. 38: 200-204. DOI: 10.1021/acs.organomet.8b00778  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2017 Lo J, Zhang X, Williams T, Nutt S. Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin Journal of Composite Materials. 52: 1481-1493. DOI: 10.1177/0021998317727048  0.065
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2014 Bouttemy A, Ruiter Faria Filho O, Adams JD, Williams T. Adenostoma fasciculatum, California Chamise: Chemistry and Use in Skin Conditions Integrative Medicine International. 1: 25-31. DOI: 10.1159/000362630  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2020 Ma Y, Navarro CA, Williams TJ, Nutt SR. Recovery and reuse of acid digested amine/epoxy-based composite matrices Polymer Degradation and Stability. 175: 109125. DOI: 10.1016/j.polymdegradstab.2020.109125  0.064
2013 Wilkins D, Yau S, Williams TJ, Allen MA, Brown MV, DeMaere MZ, Lauro FM, Cavicchioli R. Key microbial drivers in Antarctic aquatic environments. Fems Microbiology Reviews. 37: 303-35. PMID 23062173 DOI: 10.1111/1574-6976.12007  0.062
2019 Zhang H, Liu S, Nelson CS, Bezmaternykh L, Chen YS, Wang SG, Lobo R, Page KL, Matsuda M, Pajerowski D, Williams T, Tyson TA. Structural features enabling multiferroic behavior in the RX3(BO3)4 system. Journal of Physics. Condensed Matter : An Institute of Physics Journal. PMID 31484172 DOI: 10.1088/1361-648X/Ab415F  0.062
2012 Williams TJ. New cell for asthma: enter the myeloid. Thorax. 67: 1114-5. PMID 22935475 DOI: 10.1136/thoraxjnl-2012-202140  0.061
2013 Bazylinski DA, Williams TJ, Lefèvre CT, Berg RJ, Zhang CL, Bowser SS, Dean AJ, Beveridge TJ. Magnetococcus marinus gen. nov., sp. nov., a marine, magnetotactic bacterium that represents a novel lineage (Magnetococcaceae fam. nov., Magnetococcales ord. nov.) at the base of the Alphaproteobacteria. International Journal of Systematic and Evolutionary Microbiology. 63: 801-8. PMID 22581902 DOI: 10.1099/Ijs.0.038927-0  0.061
2012 Williams TJ, Osinowo OA, Smith OF, James IJ, Ikeobi CON, Onagbesan OM, Shittu OO, Solola FT. Effects of milking frequency on milk yield, dry matter intake and efficiency of feed utilization in wad goats | Efectos de la frecuencia de ordeño en la producción de leche, consumo de materia seca y eficiencia del alimento en cabras wad Archivos De Zootecnia. 61: 457-465.  0.061
2011 Hamidian MH, Schmidt AR, Firmo IA, Allan MP, Bradley P, Garrett JD, Williams TJ, Luke GM, Dubi Y, Balatsky AV, Davis JC. How Kondo-holes create intense nanoscale heavy-fermion hybridization disorder. Proceedings of the National Academy of Sciences of the United States of America. 108: 18233-7. PMID 22006302 DOI: 10.1073/Pnas.1115027108  0.06
2020 Liu Y, Rakhman A, Long CD, Liu Y, Williams TJ. Laser-assisted high-energy proton pulse extraction for feasibility study of co-located muon source at the SNS Nuclear Instruments and Methods in Physics Research Section a: Accelerators, Spectrometers, Detectors and Associated Equipment. 962: 163706. DOI: 10.1016/J.Nima.2020.163706  0.059
2014 Williams TJ, Allen MA, DeMaere MZ, Kyrpides NC, Tringe SG, Woyke T, Cavicchioli R. Microbial ecology of an Antarctic hypersaline lake: genomic assessment of ecophysiology among dominant haloarchaea. The Isme Journal. 8: 1645-58. PMID 24553470 DOI: 10.1038/ismej.2014.18  0.059
2013 Williams TJ, Wilkins D, Long E, Evans F, DeMaere MZ, Raftery MJ, Cavicchioli R. The role of planktonic Flavobacteria in processing algal organic matter in coastal East Antarctica revealed using metagenomics and metaproteomics. Environmental Microbiology. 15: 1302-17. PMID 23126454 DOI: 10.1111/1462-2920.12017  0.057
2009 Schübbe S, Williams TJ, Xie G, Kiss HE, Brettin TS, Martinez D, Ross CA, Schüler D, Cox BL, Nealson KH, Bazylinski DA. Complete genome sequence of the chemolithoautotrophic marine magnetotactic coccus strain MC-1. Applied and Environmental Microbiology. 75: 4835-52. PMID 19465526 DOI: 10.1128/Aem.02874-08  0.056
2011 Cavicchioli R, Charlton T, Ertan H, Mohd Omar S, Siddiqui KS, Williams TJ. Biotechnological uses of enzymes from psychrophiles. Microbial Biotechnology. 4: 449-60. PMID 21733127 DOI: 10.1111/j.1751-7915.2011.00258.x  0.056
2013 Skedros JG, Keenan KE, Williams TJ, Kiser CJ. Secondary osteon size and collagen/lamellar organization ("osteon morphotypes") are not coupled, but potentially adapt independently for local strain mode or magnitude. Journal of Structural Biology. 181: 95-107. PMID 23123271 DOI: 10.1016/j.jsb.2012.10.013  0.055
2009 Williams T. Axial Energy Distribution in Disc-Shaped Tantalum and Aluminium Bremsstrahlung Conversion Targets Acta Physica Polonica A. 115: 1180-1182. DOI: 10.12693/APhysPolA.115.1180  0.055
2009 Williams T. Axial Energy Distribution in Disc-Shaped Tantalum and Aluminium Bremsstrahlung Conversion Targets Acta Physica Polonica A. 115: 1180-1182. DOI: 10.12693/APhysPolA.115.1180  0.055
2009 Williams T. Axial Energy Distribution in Disc-Shaped Tantalum and Aluminium Bremsstrahlung Conversion Targets Acta Physica Polonica A. 115: 1180-1182. DOI: 10.12693/APhysPolA.115.1180  0.055
2009 Williams T. Axial Energy Distribution in Disc-Shaped Tantalum and Aluminium Bremsstrahlung Conversion Targets Acta Physica Polonica A. 115: 1180-1182. DOI: 10.12693/APhysPolA.115.1180  0.055
2009 Williams T. Axial Energy Distribution in Disc-Shaped Tantalum and Aluminium Bremsstrahlung Conversion Targets Acta Physica Polonica A. 115: 1180-1182. DOI: 10.12693/APhysPolA.115.1180  0.055
2009 Williams T. Axial Energy Distribution in Disc-Shaped Tantalum and Aluminium Bremsstrahlung Conversion Targets Acta Physica Polonica A. 115: 1180-1182. DOI: 10.12693/APhysPolA.115.1180  0.055
2009 Williams T. Axial Energy Distribution in Disc-Shaped Tantalum and Aluminium Bremsstrahlung Conversion Targets Acta Physica Polonica A. 115: 1180-1182. DOI: 10.12693/APhysPolA.115.1180  0.055
2009 Williams T. Axial Energy Distribution in Disc-Shaped Tantalum and Aluminium Bremsstrahlung Conversion Targets Acta Physica Polonica A. 115: 1180-1182. DOI: 10.12693/APhysPolA.115.1180  0.055
2009 Williams T. Axial Energy Distribution in Disc-Shaped Tantalum and Aluminium Bremsstrahlung Conversion Targets Acta Physica Polonica A. 115: 1180-1182. DOI: 10.12693/APhysPolA.115.1180  0.055
2009 Williams T. Axial Energy Distribution in Disc-Shaped Tantalum and Aluminium Bremsstrahlung Conversion Targets Acta Physica Polonica A. 115: 1180-1182. DOI: 10.12693/APhysPolA.115.1180  0.055
2009 Williams T. Axial Energy Distribution in Disc-Shaped Tantalum and Aluminium Bremsstrahlung Conversion Targets Acta Physica Polonica A. 115: 1180-1182. DOI: 10.12693/APhysPolA.115.1180  0.055
2009 Williams T. Axial Energy Distribution in Disc-Shaped Tantalum and Aluminium Bremsstrahlung Conversion Targets Acta Physica Polonica A. 115: 1180-1182. DOI: 10.12693/APhysPolA.115.1180  0.055
2009 Williams T. Axial Energy Distribution in Disc-Shaped Tantalum and Aluminium Bremsstrahlung Conversion Targets Acta Physica Polonica A. 115: 1180-1182. DOI: 10.12693/APhysPolA.115.1180  0.055
2009 Williams T. Axial Energy Distribution in Disc-Shaped Tantalum and Aluminium Bremsstrahlung Conversion Targets Acta Physica Polonica A. 115: 1180-1182. DOI: 10.12693/APhysPolA.115.1180  0.055
2009 Williams T. Axial Energy Distribution in Disc-Shaped Tantalum and Aluminium Bremsstrahlung Conversion Targets Acta Physica Polonica A. 115: 1180-1182. DOI: 10.12693/APhysPolA.115.1180  0.055
2009 Williams T. Axial Energy Distribution in Disc-Shaped Tantalum and Aluminium Bremsstrahlung Conversion Targets Acta Physica Polonica A. 115: 1180-1182. DOI: 10.12693/APhysPolA.115.1180  0.055
2009 Williams T. Axial Energy Distribution in Disc-Shaped Tantalum and Aluminium Bremsstrahlung Conversion Targets Acta Physica Polonica A. 115: 1180-1182. DOI: 10.12693/APhysPolA.115.1180  0.055
2009 Williams T. Axial Energy Distribution in Disc-Shaped Tantalum and Aluminium Bremsstrahlung Conversion Targets Acta Physica Polonica A. 115: 1180-1182. DOI: 10.12693/APhysPolA.115.1180  0.055
2009 Williams T. Axial Energy Distribution in Disc-Shaped Tantalum and Aluminium Bremsstrahlung Conversion Targets Acta Physica Polonica A. 115: 1180-1182. DOI: 10.12693/APhysPolA.115.1180  0.055
Hide low-probability matches.