Caroline Nettekoven - Related publications

Affiliations: 
University of Oxford, Oxford, United Kingdom 
NOTE: We are testing a new system for identifying relevant work based on semantic analysis that identifies similarities between recently published papers and the current author's publications. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches.
14 most relevant papers in past 60 days:
Year Citation  Score
2021 Hélie S, Shamloo F, Zhang H, Ell SW. The impact of training methodology and representation on rule-based categorization: An fMRI study. Cognitive, Affective & Behavioral Neuroscience. PMID 33825123 DOI: 10.3758/s13415-021-00882-0   
2021 Sayalı C, Badre D. Neural systems underlying the learning of cognitive effort costs. Cognitive, Affective & Behavioral Neuroscience. PMID 33959895 DOI: 10.3758/s13415-021-00893-x   
2021 Rosedahl LA, Ashby FG. Linear separability, irrelevant variability, and categorization difficulty. Journal of Experimental Psychology. Learning, Memory, and Cognition. PMID 33871263 DOI: 10.1037/xlm0001000   
2021 Olivier GN, Paul SS, Walter CS, Hayes HA, Foreman KB, Duff K, Schaefer SY, Dibble LE. The feasibility and efficacy of a serial reaction time task that measures motor learning of anticipatory stepping. Gait & Posture. 86: 346-353. PMID 33857800 DOI: 10.1016/j.gaitpost.2021.04.002   
2021 VanRullen R, Kanai R. Deep learning and the Global Workspace Theory. Trends in Neurosciences. PMID 34001376 DOI: 10.1016/j.tins.2021.04.005   
2021 Medimorec S, Milin P, Divjak D. Working memory affects anticipatory behavior during implicit pattern learning. Psychological Research. 85: 291-301. PMID 31562540 DOI: 10.1007/S00426-019-01251-W   
2021 MacCormack JK, Armstrong-Carter E, Humphreys KL, Muscatell KA. Neurophysiological Contributors to Advantageous Risk-Taking: An Experimental Psychopharmacological Investigation. Social Cognitive and Affective Neuroscience. PMID 33860790 DOI: 10.1093/scan/nsab047   
2021 Lu Q, Li Y, Ye C. Volumetric white matter tract segmentation with nested self-supervised learning using sequential pretext tasks. Medical Image Analysis. 72: 102094. PMID 34004493 DOI: 10.1016/j.media.2021.102094   
2021 Bera K, Shukla A, Bapi RS. Cognitive and Motor Learning in Internally-Guided Motor Skills. Frontiers in Psychology. 12: 604323. PMID 33897525 DOI: 10.3389/fpsyg.2021.604323   
2021 Maurer LK, Joch M, Hegele M, Maurer H, Müller H. Relevance of predictive and postdictive error information in the course of motor learning. Neuroscience. PMID 34000321 DOI: 10.1016/j.neuroscience.2021.05.007   
2021 Le Glaz A, Haralambous Y, Kim-Dufor DH, Lenca P, Billot R, Ryan TC, Marsh J, DeVylder J, Walter M, Berrouiguet S, Lemey C. Machine Learning and Natural Language Processing in Mental Health: Systematic Review. Journal of Medical Internet Research. 23: e15708. PMID 33944788 DOI: 10.2196/15708   
2021 Buchs G, Haimler B, Kerem M, Maidenbaum S, Braun L, Amedi A. A self-training program for sensory substitution devices. Plos One. 16: e0250281. PMID 33905446 DOI: 10.1371/journal.pone.0250281   
2021 Lew-Levy S, Ringen EJ, Crittenden AN, Mabulla IA, Broesch T, Kline MA. The Life History of Learning Subsistence Skills among Hadza and BaYaka Foragers from Tanzania and the Republic of Congo. Human Nature (Hawthorne, N.Y.). PMID 33982236 DOI: 10.1007/s12110-021-09386-9   
2021 Cao S, Song B. Visual attentional-driven deep learning method for flower recognition. Mathematical Biosciences and Engineering : Mbe. 18: 1981-1991. PMID 33892533 DOI: 10.3934/mbe.2021103