Tomasz Puzyn - Publications

Affiliations: 
Laboratory of Environmental Chemometrics University of Gda?sk 

104 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2024 Varsou DD, Banerjee A, Roy J, Roy K, Savvas G, Sarimveis H, Wyrzykowska E, Balicki M, Puzyn T, Melagraki G, Lynch I, Afantitis A. The round-robin approach applied to nanoinformatics: consensus prediction of nanomaterials zeta potential. Beilstein Journal of Nanotechnology. 15: 1536-1553. PMID 39624206 DOI: 10.3762/bjnano.15.121  0.313
2023 Furxhi I, Kalapus M, Costa A, Puzyn T. Artificial augmented dataset for the enhancement of nano-QSARs models. A methodology based on topological projections. Nanotoxicology. 1-16. PMID 37885250 DOI: 10.1080/17435390.2023.2268163  0.33
2023 Sengottiyan S, Mikolajczyk A, Jagiełło K, Swirog M, Puzyn T. Core, Coating, or Corona? The Importance of Considering Protein Coronas in nano-QSPR Modeling of Zeta Potential. Acs Nano. PMID 36651824 DOI: 10.1021/acsnano.2c06977  0.301
2022 Swirog M, Mikolajczyk A, Jagiello K, Jänes J, Tämm K, Puzyn T. Predicting electrophoretic mobility of TiO, ZnO, and CeO nanoparticles in natural waters: The importance of environment descriptors in nanoinformatics models. The Science of the Total Environment. 840: 156572. PMID 35710003 DOI: 10.1016/j.scitotenv.2022.156572  0.375
2021 Sizochenko N, Mikolajczyk A, Syzochenko M, Puzyn T, Leszczynski J. Zeta potentials (ζ) of metal oxide nanoparticles: A meta-analysis of experimental data and a predictive neural networks modeling. Nanoimpact. 22: 100317. PMID 35559974 DOI: 10.1016/j.impact.2021.100317  0.397
2021 Sizochenko N, Mikolajczyk A, Syzochenko M, Puzyn T, Leszczynski J. Zeta potentials (ζ) of metal oxide nanoparticles: A meta-analysis of experimental data and a predictive neural networks modeling Nanoimpact. 22: 100317. DOI: 10.1016/J.IMPACT.2021.100317  0.315
2020 Rybińska-Fryca A, Mikolajczyk A, Puzyn T. Structure-activity prediction networks (SAPNets): a step beyond Nano-QSAR for effective implementation of the safe-by-design concept. Nanoscale. 12: 20669-20676. PMID 33048104 DOI: 10.1039/d0nr05220e  0.321
2020 Rybińska-Fryca A, Sosnowska A, Puzyn T. Representation of the Structure-A Key Point of Building QSAR/QSPR Models for Ionic Liquids. Materials (Basel, Switzerland). 13. PMID 32486309 DOI: 10.3390/Ma13112500  0.371
2020 Federico A, Serra A, Ha MK, Kohonen P, Choi JS, Liampa I, Nymark P, Sanabria N, Cattelani L, Fratello M, Kinaret PAS, Jagiello K, Puzyn T, Melagraki G, Gulumian M, et al. Transcriptomics in Toxicogenomics, Part II: Preprocessing and Differential Expression Analysis for High Quality Data. Nanomaterials (Basel, Switzerland). 10. PMID 32397130 DOI: 10.3390/Nano10050903  0.339
2020 Kinaret PAS, Serra A, Federico A, Kohonen P, Nymark P, Liampa I, Ha MK, Choi JS, Jagiello K, Sanabria N, Melagraki G, Cattelani L, Fratello M, Sarimveis H, Afantitis A, ... ... Puzyn T, et al. Transcriptomics in Toxicogenomics, Part I: Experimental Design, Technologies, Publicly Available Data, and Regulatory Aspects. Nanomaterials (Basel, Switzerland). 10. PMID 32326418 DOI: 10.3390/Nano10040750  0.375
2020 Serra A, Fratello M, Cattelani L, Liampa I, Melagraki G, Kohonen P, Nymark P, Federico A, Kinaret PAS, Jagiello K, Ha MK, Choi JS, Sanabria N, Gulumian M, Puzyn T, et al. Transcriptomics in Toxicogenomics, Part III: Data Modelling for Risk Assessment. Nanomaterials (Basel, Switzerland). 10. PMID 32276469 DOI: 10.3390/Nano10040708  0.391
2020 Rybińska-Fryca A, Mikolajczyk A, Łuczak J, Paszkiewicz-Gawron M, Paszkiewicz M, Zaleska-Medynska A, Puzyn T. How thermal stability of ionic liquids leads to more efficient TiO-based nanophotocatalysts: Theoretical and experimental studies. Journal of Colloid and Interface Science. 572: 396-407. PMID 32272314 DOI: 10.1016/J.Jcis.2020.03.079  0.31
2020 Afantitis A, Melagraki G, Isigonis P, Tsoumanis A, Varsou DD, Valsami-Jones E, Papadiamantis A, Ellis LA, Sarimveis H, Doganis P, Karatzas P, Tsiros P, Liampa I, Lobaskin V, Greco D, ... ... Puzyn T, et al. NanoSolveIT Project: Driving nanoinformatics research to develop innovative and integrated tools for nanosafety assessment. Computational and Structural Biotechnology Journal. 18: 583-602. PMID 32226594 DOI: 10.1016/J.Csbj.2020.02.023  0.374
2019 Barabaś A, Jagiełło K, Rybińska-Fryca A, Dąbrowska AM, Puzyn T. How the configurational changes influence on molecular characteristics. The alkyl 3-azido-2,3-dideoxy-D-hexopyranosides - Theoretical approach. Carbohydrate Research. 481: 72-79. PMID 31254910 DOI: 10.1016/J.Carres.2019.06.012  0.315
2019 Mikolajczyk A, Sizochenko N, Mulkiewicz E, Malankowska A, Rasulev B, Puzyn T. A chemoinformatics approach for the characterization of hybrid nanomaterials: safer and efficient design perspective. Nanoscale. 11: 11808-11818. PMID 31184677 DOI: 10.1039/C9Nr01162E  0.672
2019 Acharya K, Werner D, Dolfing J, Barycki M, Meynet P, Mrozik W, Komolafe O, Puzyn T, Davenport RJ. A quantitative structure-biodegradation relationship (QSBR) approach to predict biodegradation rates of aromatic chemicals. Water Research. 157: 181-190. PMID 30953853 DOI: 10.1016/J.Watres.2019.03.086  0.35
2019 Sosnowska A, Brzeski J, Skurski P, Puzyn T. The Acid Strength of the Lewis-Brønsted Superacids - A QSPR Study. Molecular Informatics. 38: e1800113. PMID 30747480 DOI: 10.1002/Minf.201800113  0.322
2019 Wyrzykowska E, Rybińska-Fryca A, Sosnowska A, Puzyn T. Virtual screening in the design of ionic liquids as environmentally safe bactericides Green Chemistry. 21: 1965-1973. DOI: 10.1039/C8Gc03400A  0.305
2019 Giusti A, Atluri R, Tsekovska R, Gajewicz A, Apostolova MD, Battistelli CL, Bleeker EAJ, Bossa C, Bouillard J, Dusinska M, Gómez-Fernández P, Grafström R, Gromelski M, Handzhiyski Y, Jacobsen NR, ... ... Puzyn T, et al. Nanomaterial grouping: Existing approaches and future recommendations Nanoimpact. 16: 100182. DOI: 10.1016/J.Impact.2019.100182  0.388
2018 Oberbek P, Bolek T, Chlanda A, Hirano S, Kusnieruk S, Rogowska-Tylman J, Nechyporenko G, Zinchenko V, Swieszkowski W, Puzyn T. Characterization and influence of hydroxyapatite nanopowders on living cells. Beilstein Journal of Nanotechnology. 9: 3079-3094. PMID 30643706 DOI: 10.3762/Bjnano.9.286  0.391
2018 Barycki M, Sosnowska A, Jagiello K, Puzyn T. Multi-Objective Genetic Algorithm (MOGA) As a Feature Selecting Strategy in the Development of Ionic Liquids' Quantitative Toxicity-Toxicity Relationship Models. Journal of Chemical Information and Modeling. 58: 2467-2476. PMID 30507178 DOI: 10.1021/Acs.Jcim.8B00378  0.42
2018 Judycka U, Jagiello K, Gromelski M, Bober L, Błażejowski J, Puzyn T. Chemometric approach to correlations between retention parameters of non-polar HPLC columns and physicochemical characteristics for ampholytic substances of biological and pharmaceutical relevance. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences. 1095: 8-14. PMID 30036737 DOI: 10.1016/J.Jchromb.2018.07.019  0.365
2018 Sosnowska A, Rybinska-Fryca A, Barycki M, Jagiello K, Puzyn T. Chemoinformatic Approach to Assess Toxicity of Ionic Liquids. Methods in Molecular Biology (Clifton, N.J.). 1800: 559-571. PMID 29934911 DOI: 10.1007/978-1-4939-7899-1_26  0.356
2018 Ambure P, Bhat J, Puzyn T, Roy K. Identifying natural compounds as multi-target directed ligands against Alzheimer's disease: an in silico approach. Journal of Biomolecular Structure & Dynamics. 1-47. PMID 29578387 DOI: 10.1080/07391102.2018.1456975  0.345
2018 Sizochenko N, Mikolajczyk A, Jagiello K, Puzyn T, Leszczynski J, Rasulev B. How the toxicity of nanomaterials towards different species could be simultaneously evaluated: a novel multi-nano-read-across approach. Nanoscale. 10: 582-591. PMID 29168526 DOI: 10.1039/C7Nr05618D  0.691
2018 Mikolajczyk A, Gajewicz A, Mulkiewicz E, Rasulev B, Marchelek M, Diak M, Hirano S, Zaleska-Medynska A, Puzyn T. Nano-QSAR modeling for ecosafe design of heterogeneous TiO2-based nano-photocatalysts Environmental Science. Nano. 5: 1150-1160. DOI: 10.1039/C8En00085A  0.658
2018 Rybinska-Fryca A, Sosnowska A, Puzyn T. Prediction of dielectric constant of ionic liquids Journal of Molecular Liquids. 260: 57-64. DOI: 10.1016/J.Molliq.2018.03.080  0.369
2018 Judycka U, Jagiełło K, Bober L, Błażejowski J, Puzyn T. Assessing therapeutic relevance of biologically interesting, ampholytic substances based on their physicochemical and spectral characteristics with chemometric tools Chemical Physics Letters. 701: 58-64. DOI: 10.1016/J.Cplett.2018.04.040  0.408
2018 Judycka U, Jagiello K, Gromelski M, Bober L, Błażejowski J, Puzyn T. Chemometric outlook on correlations between retention parameters of polar and semipolar HPLC columns and physicochemical characteristics of ampholytic substances of biological and pharmaceutical relevance Structural Chemistry. 29: 1839-1844. DOI: 10.1007/S11224-018-1174-5  0.333
2018 Jagiello K, Makurat S, Pereć S, Rak J, Puzyn T. Molecular features of thymidine analogues governing the activity of human thymidine kinase Structural Chemistry. 29: 1367-1374. DOI: 10.1007/S11224-018-1124-2  0.316
2017 Gajewicz A, Puzyn T, Odziomek K, Urbaszek P, Haase A, Riebeling C, Luch A, Irfan MA, Landsiedel R, van der Zande M, Bouwmeester H. Decision tree models to classify nanomaterials according to the DF4nanoGrouping scheme. Nanotoxicology. 1-17. PMID 29251527 DOI: 10.1080/17435390.2017.1415388  0.418
2017 Stone V, Führ M, Feindt PH, Bouwmeester H, Linkov I, Sabella S, Murphy F, Bizer K, Tran L, Ågerstrand M, Fito C, Andersen T, Anderson D, Bergamaschi E, Cherrie JW, ... ... Puzyn T, et al. The Essential Elements of a Risk Governance Framework for Current and Future Nanotechnologies. Risk Analysis : An Official Publication of the Society For Risk Analysis. PMID 29240986 DOI: 10.1111/Risa.12954  0.309
2017 Mikolajczyk A, Sizochenko N, Mulkiewicz E, Malankowska A, Nischk M, Jurczak P, Hirano S, Nowaczyk G, Zaleska-Medynska A, Leszczynski J, Gajewicz A, Puzyn T. Evaluating the toxicity of TiO2-based nanoparticles to Chinese hamster ovary cells and Escherichia coli: a complementary experimental and computational approach. Beilstein Journal of Nanotechnology. 8: 2171-2180. PMID 29114443 DOI: 10.3762/Bjnano.8.216  0.474
2017 Puzyn T, Jeliazkova N, Sarimveis H, Marchese Robinson RL, Lobaskin V, Rallo R, Richarz AN, Gajewicz A, Papadopulos MG, Hastings J, Cronin MTD, Benfenati E, Fernandez A. Perspectives from the NanoSafety Modelling Cluster on the validation criteria for (Q)SAR models used in nanotechnology. Food and Chemical Toxicology : An International Journal Published For the British Industrial Biological Research Association. PMID 28943385 DOI: 10.1016/J.Fct.2017.09.037  0.441
2017 Bañares MA, Haase A, Tran L, Lobaskin V, Oberdörster G, Rallo R, Leszczynski J, Hoet P, Korenstein R, Hardy B, Puzyn T. CompNanoTox2015: novel perspectives from a European conference on computational nanotoxicology on predictive nanotoxicology. Nanotoxicology. 1-7. PMID 28885075 DOI: 10.1080/17435390.2017.1371351  0.4
2017 Urbaszek P, Gajewicz A, Sikorska C, Haranczyk M, Puzyn T. Modeling adsorption of brominated, chlorinated and mixed bromo/chloro-dibenzo-p-dioxins on C60 fullerene using Nano-QSPR. Beilstein Journal of Nanotechnology. 8: 752-761. PMID 28487818 DOI: 10.3762/Bjnano.8.78  0.325
2017 Richarz AN, Avramopoulos A, Benfenati E, Gajewicz A, Golbamaki Bakhtyari N, Leonis G, Marchese Robinson RL, Papadopoulos MG, Cronin MT, Puzyn T. Compilation of Data and Modelling of Nanoparticle Interactions and Toxicity in the NanoPUZZLES Project. Advances in Experimental Medicine and Biology. 947: 303-324. PMID 28168672 DOI: 10.1007/978-3-319-47754-1_10  0.504
2017 Mikolajczyk A, Nadolna J, Zalewska-Medynska A, Puzyn T. Combined Experimental and Computational Approach to Develop Efficient Photocatalysts Based on RE-TiO2 Nanoparticles Ran. DOI: 10.11159/Icnms17.107  0.398
2017 Gajewicz A, Jagiello K, Cronin MTD, Leszczynski J, Puzyn T. Addressing a bottle neck for regulation of nanomaterials: quantitative read-across (Nano-QRA) algorithm for cases when only limited data is available Environmental Science: Nano. 4: 346-358. DOI: 10.1039/C6En00399K  0.329
2017 Sizochenko N, Syzochenko M, Gajewicz A, Leszczynski J, Puzyn T. Predicting Physical Properties of Nanofluids by Computational Modeling Journal of Physical Chemistry C. 121: 1917. DOI: 10.1021/Acs.Jpcc.6B08850  0.363
2017 Sosnowska A, Grzonkowska M, Puzyn T. Global versus local QSAR models for predicting ionic liquids toxicity against IPC-81 leukemia rat cell line: The predictive ability Journal of Molecular Liquids. 231: 333-340. DOI: 10.1016/J.Molliq.2017.02.025  0.405
2017 Giełdoń A, Witt MM, Gajewicz A, Puzyn T. Rapid insight into C60 influence on biological functions of proteins Structural Chemistry. 28: 1775-1788. DOI: 10.1007/S11224-017-0957-4  0.362
2016 Cassano A, Marchese Robinson RL, Palczewska A, Puzyn T, Gajewicz A, Tran L, Manganelli S, Cronin MT. Comparing the CORAL and Random Forest approaches for modelling the in vitro cytotoxicity of silica nanomaterials. Alternatives to Laboratory Animals : Atla. 44: 533-556. PMID 28094535 DOI: 10.1177/026119291604400603  0.396
2016 Wyrzykowska E, Mikolajczyk A, Sikorska C, Puzyn T. Development of a novel in silico model of zeta potential for metal oxide nanoparticles: a nano-QSPR approach. Nanotechnology. 27: 445702. PMID 27668939 DOI: 10.1088/0957-4484/27/44/445702  0.498
2016 Jagiello K, Grzonkowska M, Swirog M, Ahmed L, Rasulev B, Avramopoulos A, Papadopoulos MG, Leszczynski J, Puzyn T. Advantages and limitations of classic and 3D QSAR approaches in nano-QSAR studies based on biological activity of fullerene derivatives. Journal of Nanoparticle Research : An Interdisciplinary Forum For Nanoscale Science and Technology. 18: 256. PMID 27642255 DOI: 10.1007/S11051-016-3564-1  0.67
2016 Grzonkowska M, Sosnowska A, Barycki M, Rybinska A, Puzyn T. How the structure of ionic liquid affects its toxicity to Vibrio fischeri? Chemosphere. 159: 199-207. PMID 27295436 DOI: 10.1016/J.Chemosphere.2016.06.004  0.39
2016 Marchese Robinson RL, Lynch I, Peijnenburg W, Rumble J, Klaessig F, Marquardt C, Rauscher H, Puzyn T, Purian R, Åberg C, Karcher S, Vriens H, Hoet P, Hoover MD, Hendren CO, et al. How should the completeness and quality of curated nanomaterial data be evaluated? Nanoscale. PMID 27143028 DOI: 10.1039/C5Nr08944A  0.309
2016 Sizochenko N, Gajewicz A, Leszczynski J, Puzyn T. Causation or only correlation? Application of causal inference graphs for evaluating causality in nano-QSAR models. Nanoscale. 8: 7203-8. PMID 26972917 DOI: 10.1039/C5Nr08279J  0.442
2016 Sosnowska A, Barycki M, Gajewicz A, Bobrowski M, Freza S, Skurski P, Uhl S, Laux E, Journot T, Jeandupeux L, Keppner H, Puzyn T. Towards the Application of Structure-Property Relationship Modeling in Materials Science: Predicting the Seebeck Coefficient for Ionic Liquid/Redox Couple Systems. Chemphyschem : a European Journal of Chemical Physics and Physical Chemistry. 17: 1591-600. PMID 26919483 DOI: 10.1002/Cphc.201600080  0.317
2016 Rybinska A, Sosnowska A, Barycki M, Puzyn T. Geometry optimization method versus predictive ability in QSPR modeling for ionic liquids. Journal of Computer-Aided Molecular Design. 30: 165-76. PMID 26830600 DOI: 10.1007/S10822-016-9894-3  0.387
2016 Kar S, Gajewicz A, Roy K, Leszczynski J, Puzyn T. Extrapolating between toxicity endpoints of metal oxide nanoparticles: Predicting toxicity to Escherichia coli and human keratinocyte cell line (HaCaT) with Nano-QTTR. Ecotoxicology and Environmental Safety. 126: 238-244. PMID 26773833 DOI: 10.1016/J.Ecoenv.2015.12.033  0.706
2016 Rybinska A, Sosnowska A, Grzonkowska M, Barycki M, Puzyn T. Filling environmental data gaps with QSPR for ionic liquids: Modeling n-octanol/water coefficient. Journal of Hazardous Materials. 303: 137-44. PMID 26530890 DOI: 10.1016/J.Jhazmat.2015.10.023  0.345
2016 Mikolajczyk A, Malankowska A, Nowaczyk G, Gajewicz A, Hirano S, Jurga S, Zaleska-Medynska A, Puzyn T. Combined experimental and computational approach to developing efficient photocatalysts based on Au/Pd–TiO2 nanoparticles Environmental Science. Nano. 3: 1425-1435. DOI: 10.1039/C6En00232C  0.433
2016 Golbamaki A, Golbamaki N, Sizochenko N, Rasulev B, Cassano A, Puzyn T, Leszczynski J, Benfenati E. P17-030Classification nano-SAR modeling of metal oxides nanoparticles genotoxicity based on comet assay data Toxicology Letters. 258. DOI: 10.1016/J.Toxlet.2016.06.1950  0.654
2016 Barycki M, Sosnowska A, Gajewicz A, Bobrowski M, Wileńska D, Skurski P, Giełdoń A, Czaplewski C, Uhl S, Laux E, Journot T, Jeandupeux L, Keppner H, Puzyn T. Temperature-dependent structure-property modeling of viscosity for ionic liquids Fluid Phase Equilibria. 427: 9-17. DOI: 10.1016/J.Fluid.2016.06.043  0.315
2016 Sikorska C, Gajewicz A, Urbaszek P, Lubinski L, Puzyn T. Efficient way of designing fullerene derivatives based on simplified DFT calculations and QSPR modeling Chemometrics and Intelligent Laboratory Systems. 152: 125-133. DOI: 10.1016/J.Chemolab.2016.02.003  0.392
2016 Jagiello K, Chomicz B, Avramopoulos A, Gajewicz A, Mikolajczyk A, Bonifassi P, Papadopoulos MG, Leszczynski J, Puzyn T. Size-dependent electronic properties of nanomaterials: How this novel class of nanodescriptors supposed to be calculated? Structural Chemistry. 28: 635-643. DOI: 10.1007/S11224-016-0838-2  0.315
2015 Sikorska C, Puzyn T. The performance of selected semi-empirical and DFT methods in studying C₆₀ fullerene derivatives. Nanotechnology. 26: 455702. PMID 26472593 DOI: 10.1088/0957-4484/26/45/455702  0.302
2015 Judycka-Proma U, Bober L, Gajewicz A, Puzyn T, Błażejowski J. Chemometric analysis of correlations between electronic absorption characteristics and structural and/or physicochemical parameters for ampholytic substances of biological and pharmaceutical relevance Spectrochimica Acta Part a: Molecular and Biomolecular Spectroscopy. 138: 700-710. PMID 25544186 DOI: 10.1016/J.Saa.2014.11.067  0.342
2015 Gajewicz A, Cronin MT, Rasulev B, Leszczynski J, Puzyn T. Novel approach for efficient predictions properties of large pool of nanomaterials based on limited set of species: nano-read-across. Nanotechnology. 26: 015701. PMID 25473798 DOI: 10.1088/0957-4484/26/1/015701  0.695
2015 Tantra R, Oksel C, Puzyn T, Wang J, Robinson KN, Wang XZ, Ma CY, Wilkins T. Nano(Q)SAR: Challenges, pitfalls and perspectives. Nanotoxicology. 9: 636-42. PMID 25211549 DOI: 10.3109/17435390.2014.952698  0.343
2015 Gajewicz A, Schaeublin N, Rasulev B, Hussain S, Leszczynska D, Puzyn T, Leszczynski J. Towards understanding mechanisms governing cytotoxicity of metal oxides nanoparticles: hints from nano-QSAR studies. Nanotoxicology. 9: 313-25. PMID 24983896 DOI: 10.3109/17435390.2014.930195  0.664
2015 Sizochenko N, Rasulev B, Gajewicz A, Mokshyna E, Kuz'min VE, Leszczynski J, Puzyn T. Causal inference methods to assist in mechanistic interpretation of classification nano-SAR models Rsc Advances. 5: 77739-77745. DOI: 10.1039/C5Ra11399G  0.697
2015 Mikolajczyk A, Gajewicz A, Rasulev B, Schaeublin N, Maurer-Gardner E, Hussain S, Leszczynski J, Puzyn T. Zeta potential for metal oxide nanoparticles: A predictive model developed by a nano-quantitative structure-property relationship approach Chemistry of Materials. 27: 2400-2407. DOI: 10.1021/Cm504406A  0.69
2015 Sizochenko N, Jagiello K, Leszczynski J, Puzyn T. How the “Liquid Drop” Approach Could Be Efficiently Applied for Quantitative Structure–Property Relationship Modeling of Nanofluids Journal of Physical Chemistry C. 119: 25542-25547. DOI: 10.1021/Acs.Jpcc.5B05759  0.428
2015 Richarz A, Madden JC, Robinson RLM, Lubiński Ł, Mokshina E, Urbaszek P, Kuz׳min VE, Puzyn T, Cronin MTD. Development of computational models for the prediction of the toxicity of nanomaterials Perspectives On Science. 3: 27-29. DOI: 10.1016/J.Pisc.2014.11.015  0.381
2015 Jagiello K, Mostrag-Szlichtyng A, Gajewicz A, Kawai T, Imaizumi Y, Sakurai T, Yamamoto H, Tatarazako N, Mizukawa K, Aoki Y, Suzuki N, Watanabe H, Puzyn T. Towards modelling of the environmental fate of pharmaceuticals using the QSPR-MM scheme Environmental Modelling and Software. 72: 147-154. DOI: 10.1016/J.Envsoft.2015.06.013  0.412
2015 Ambure P, Aher RB, Gajewicz A, Puzyn T, Roy K. "NanoBRIDGES" software: Open access tools to perform QSAR and nano-QSAR modeling Chemometrics and Intelligent Laboratory Systems. 147: 1-13. DOI: 10.1016/J.Chemolab.2015.07.007  0.385
2014 Sizochenko N, Rasulev B, Gajewicz A, Kuz'min V, Puzyn T, Leszczynski J. From basic physics to mechanisms of toxicity: the "liquid drop" approach applied to develop predictive classification models for toxicity of metal oxide nanoparticles. Nanoscale. 6: 13986-93. PMID 25317542 DOI: 10.1039/C4Nr03487B  0.699
2014 Toropova AP, Toropov AA, Benfenati E, Puzyn T, Leszczynska D, Leszczynski J. Optimal descriptor as a translator of eclectic information into the prediction of membrane damage: the case of a group of ZnO and TiO2 nanoparticles. Ecotoxicology and Environmental Safety. 108: 203-9. PMID 25086232 DOI: 10.1016/J.Ecoenv.2014.07.005  0.39
2014 Kar S, Gajewicz A, Puzyn T, Roy K, Leszczynski J. Periodic table-based descriptors to encode cytotoxicity profile of metal oxide nanoparticles: a mechanistic QSTR approach. Ecotoxicology and Environmental Safety. 107: 162-9. PMID 24949897 DOI: 10.1016/J.Ecoenv.2014.05.026  0.709
2014 Kawai T, Jagiello K, Sosnowska A, Odziomek K, Gajewicz A, Handoh IC, Puzyn T, Suzuki N. A new metric for long-range transport potential of chemicals. Environmental Science & Technology. 48: 3245-52. PMID 24579696 DOI: 10.1021/Es4026003  0.396
2014 Kar S, Gajewicz A, Puzyn T, Roy K. Nano-quantitative structure-activity relationship modeling using easily computable and interpretable descriptors for uptake of magnetofluorescent engineered nanoparticles in pancreatic cancer cells. Toxicology in Vitro : An International Journal Published in Association With Bibra. 28: 600-6. PMID 24412539 DOI: 10.1016/J.Tiv.2013.12.018  0.698
2014 Lubinski L, Urbaszek P, Gajewicz A, Cronin MT, Enoch SJ, Madden JC, Leszczynska D, Leszczynski J, Puzyn T. Evaluation criteria for the quality of published experimental data on nanomaterials and their usefulness for QSAR modelling. Sar and Qsar in Environmental Research. 24: 995-1008. PMID 24313439 DOI: 10.1080/1062936X.2013.840679  0.482
2014 Sosnowska A, Barycki M, Zaborowska M, Rybinska A, Puzyn T. Towards designing environmentally safe ionic liquids: the influence of the cation structure Green Chemistry. 16: 4749-4757. DOI: 10.1039/C4Gc00526K  0.355
2014 Sosnowska A, Barycki M, Jagiello K, Haranczyk M, Gajewicz A, Kawai T, Suzuki N, Puzyn T. Predicting enthalpy of vaporization for Persistent Organic Pollutants with Quantitative Structure–Property Relationship (QSPR) incorporating the influence of temperature on volatility Atmospheric Environment. 87: 10-18. DOI: 10.1016/J.Atmosenv.2013.12.036  0.375
2014 Jagiello K, Sosnowska A, Walker S, Haranczyk M, Gajewicz A, Kawai T, Suzuki N, Leszczynski J, Puzyn T. Direct QSPR: the most efficient way of predicting organic carbon/water partition coefficient (log K OC) for polyhalogenated POPs Structural Chemistry. 25: 997-1004. DOI: 10.1007/S11224-014-0419-1  0.331
2013 Toropov AA, Toropova AP, Puzyn T, Benfenati E, Gini G, Leszczynska D, Leszczynski J. QSAR as a random event: modeling of nanoparticles uptake in PaCa2 cancer cells. Chemosphere. 92: 31-7. PMID 23566368 DOI: 10.1016/J.Chemosphere.2013.03.012  0.43
2013 Richarz A, Cronin M, Madden J, Lubinski L, Mokshina E, Urbaszek P, Puzyn T, Kuz’min V. Toxicity of nanomaterials: Availability and suitability of data for the development of in silico models Toxicology Letters. 221. DOI: 10.1016/J.Toxlet.2013.05.609  0.398
2013 Odziomek K, Gajewicz A, Haranczyk M, Puzyn T. Reliability of environmental fate modeling results for POPs based on various methods of determining the air/water partition coefficient (log KAW) Atmospheric Environment. 73: 177-184. DOI: 10.1016/J.Atmosenv.2013.02.052  0.375
2013 Toropova AP, Toropov AA, Puzyn T, Benfenati E, Leszczynska D, Leszczynski J. Optimal descriptor as a translator of eclectic information into the prediction of thermal conductivity of micro-electro-mechanical systems Journal of Mathematical Chemistry. 51: 2230-2237. DOI: 10.1007/S10910-013-0211-2  0.349
2012 Haranczyk M, Urbaszek P, Ng EG, Puzyn T. Combinatorial × computational × cheminformatics (C3) approach to characterization of congeneric libraries of organic pollutants. Journal of Chemical Information and Modeling. 52: 2902-9. PMID 23036090 DOI: 10.1021/Ci300289B  0.374
2012 Toropov AA, Toropova AP, Benfenati E, Gini G, Puzyn T, Leszczynska D, Leszczynski J. Novel application of the CORAL software to model cytotoxicity of metal oxide nanoparticles to bacteria Escherichia coli. Chemosphere. 89: 1098-102. PMID 22704203 DOI: 10.1016/J.Chemosphere.2012.05.077  0.459
2012 Gajewicz A, Rasulev B, Dinadayalane TC, Urbaszek P, Puzyn T, Leszczynska D, Leszczynski J. Advancing risk assessment of engineered nanomaterials: application of computational approaches. Advanced Drug Delivery Reviews. 64: 1663-93. PMID 22664229 DOI: 10.1016/J.Addr.2012.05.014  0.65
2011 Puzyn T. On the replacement of empirical parameters in multimedia mass balance models with QSPR data. Journal of Hazardous Materials. 192: 970-7. PMID 21741174 DOI: 10.1016/J.Jhazmat.2011.05.078  0.402
2011 Puzyn T, Rasulev B, Gajewicz A, Hu X, Dasari TP, Michalkova A, Hwang HM, Toropov A, Leszczynska D, Leszczynski J. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nature Nanotechnology. 6: 175-8. PMID 21317892 DOI: 10.1038/Nnano.2011.10  0.692
2011 Gajewicz A, Puzyn T, Rasulev B, Leszczynska D, Leszczynski J. Metal oxide nanoparticles: Size-dependence of quantum-mechanical properties Nanoscience and Nanotechnology - Asia. 1: 53-58. DOI: 10.2174/2210681211101010053  0.594
2011 Puzyn T, Gajewicz A, Rybacka A, Haranczyk M. Global versus local QSPR models for persistent organic pollutants: balancing between predictivity and economy Structural Chemistry. 22: 873-884. DOI: 10.1007/S11224-011-9764-5  0.404
2011 Puzyn T, Mostrag-Szlichtyng A, Gajewicz A, Skrzyński M, Worth AP. Investigating the influence of data splitting on the predictive ability of QSAR/QSPR models Structural Chemistry. 22: 795-804. DOI: 10.1007/S11224-011-9757-4  0.385
2010 Mostrag A, Puzyn T, Haranczyk M. Modeling the overall persistence and environmental mobility of sulfur-containing polychlorinated organic compounds. Environmental Science and Pollution Research International. 17: 470-7. PMID 19937279 DOI: 10.1007/S11356-009-0257-7  0.332
2010 Gajewicz A, Haranczyk M, Puzyn T. Predicting logarithmic values of the subcooled liquid vapor pressure of halogenated persistent organic pollutants with QSPR: How different are chlorinated and brominated congeners? Atmospheric Environment. 44: 1428-1436. DOI: 10.1016/J.Atmosenv.2010.01.041  0.315
2009 Puzyn T, Leszczynska D, Leszczynski J. Toward the development of "nano-QSARs": advances and challenges. Small (Weinheim An Der Bergstrasse, Germany). 5: 2494-509. PMID 19787675 DOI: 10.1002/Smll.200900179  0.463
2009 Puzyn T, Mostrag A, Falandysz J, Kholod Y, Leszczynski J. Predicting water solubility of congeners: chloronaphthalenes--a case study. Journal of Hazardous Materials. 170: 1014-22. PMID 19524360 DOI: 10.1016/J.Jhazmat.2009.05.079  0.402
2008 Puzyn T, Suzuki N, Haranczyk M. How do the partitioning properties of polyhalogenated POPs change when chlorine is replaced with bromine? Environmental Science & Technology. 42: 5189-95. PMID 18754368 DOI: 10.1021/Es8002348  0.304
2008 Puzyn T, Suzuki N, Haranczyk M, Rak J. Calculation of quantum-mechanical descriptors for QSPR at the DFT level: is it necessary? Journal of Chemical Information and Modeling. 48: 1174-80. PMID 18510372 DOI: 10.1021/Ci800021P  0.393
2008 Haranczyk M, Puzyn T, Sadowski P. ConGENER - A tool for modeling of the congeneric sets of environmental pollutants Qsar and Combinatorial Science. 27: 826-833. DOI: 10.1002/Qsar.200710149  0.323
2007 Puzyn T, Falandysz J. Application and comparison of different chemometric approaches in QSPR modelling of supercooled liquid vapour pressures for chloronaphthalenes. Sar and Qsar in Environmental Research. 18: 299-313. PMID 17514572 DOI: 10.1080/10629360701303875  0.347
2007 Puzyn T, Falandysz J, Jones PD, Giesy JP. Quantitative structure-activity relationships for the prediction of relative in vitro potencies (REPs) for chloronaphthalenes. Journal of Environmental Science and Health. Part a, Toxic/Hazardous Substances & Environmental Engineering. 42: 573-90. PMID 17454365 DOI: 10.1080/10934520701244326  0.347
2007 Piliszek S, Wilczyńska-Piliszek AJ, Puzyn T, Falandysz J. Thermodynamical and quantum-chemical characterization and chemometrical selection of representative congeners of trans-chloroazoxybenzene. Journal of Environmental Science and Health. Part a, Toxic/Hazardous Substances & Environmental Engineering. 42: 135-42. PMID 17182383 DOI: 10.1080/10934520601011221  0.334
2007 Puzyn T, Falandysz J. QSPR modeling of partition coefficients and henry's law constants for 75 chloronaphthalene congeners by means of six chemometric approaches : A comparative study Journal of Physical and Chemical Reference Data. 36: 203-214. DOI: 10.1063/1.2432888  0.363
2006 Wilczyńska-Piliszek AJ, Puzyn T, Piliszek S, Falandysz J. Selection of representative congener for polychlorinated trans-azobenzenes (PCt-ABs) based on comprehensive thermodynamical and quantum-chemical characterization. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes. 41: 1131-42. PMID 16923596 DOI: 10.1080/03601230600856835  0.326
2005 Puzyn T, Falandysz J. Octanol/water partition coefficients of chloronaphthalenes. Journal of Environmental Science and Health Part a-Toxic\/Hazardous Substances & Environmental Engineering. 40: 1651-1663. PMID 16134358 DOI: 10.1081/Ese-200067976  0.318
2004 Falandysz J, Puzyn T. Computational prediction of 7-ethoxyresorufin-O-diethylase (EROD) and luciferase (luc) inducing potency for 75 congeners of chloronaphthalene. Journal of Environmental Science and Health Part a-Toxic\/Hazardous Substances & Environmental Engineering. 39: 1505-1523. PMID 15244333 DOI: 10.1081/Ese-120037850  0.329
2003 Puzyn T, Falandysz J. Prediction of log K(OA), T(C), and log P(L) for 281 chlorosubstituted pyrenes as the key parameters featuring environmental transport and fate of these compounds. Journal of Environmental Science and Health. Part a, Toxic/Hazardous Substances & Environmental Engineering. 38: 1761-80. PMID 12940480 DOI: 10.1081/Ese-120022877  0.305
Show low-probability matches.