Ofer Hadar - Publications

Affiliations: 
Ben Gurion University of the Negev 
Area:
Image and Video processing, Video compression, watermarking, Cyber Security , Deep Learning in Computer Vision.

24 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2016 Huber-Shalem R, Hadar O, Rotman SR, Huber-Lerner M. Parametric temporal compression of infrared imagery sequences containing a slow-moving point target. Applied Optics. 55: 1151-63. PMID 26906391 DOI: 10.1364/Ao.55.001151  0.688
2015 Huber-Lerner M, Hadar O, Rotman SR, Huber-Shalem R. Hyperspectral Band Selection for Anomaly Detection: The Role of Data Gaussianity Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing. DOI: 10.1109/Jstars.2015.2487638  0.559
2015 Cohen E, Heiman R, Carmi M, Hadar O, Cohen A. When physics meets signal processing: Image and video denoising based on ising theory Signal Processing: Image Communication. 34: 14-21. DOI: 10.1016/J.Image.2015.02.007  0.351
2014 Huber-Lerner M, Hadar O, Rotman SR, Huber-Shalem R. Compression of hyperspectral images containing a subpixel target Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 7: 2246-2255. DOI: 10.1109/Jstars.2014.2320754  0.674
2013 Huber-Shalem R, Hadar O, Rotman SR, Huber-Lerner M. Compression of infrared imagery sequences containing a slow-moving point target, part II. Applied Optics. 52: 1646-54. PMID 23478768 DOI: 10.1364/Ao.52.001646  0.682
2013 Huber-Shalem R, Hadar O, Rotman SR, Huber-Lerner M, Evstigneev S. Improving variance estimation ratio score calculation for slow moving point targets detection in infrared imagery sequences Proceedings of Spie - the International Society For Optical Engineering. 8857. DOI: 10.1117/12.2023681  0.651
2012 Cohen E, Heiman R, Hadar O. Image and video restoration via Ising-like models Proceedings of Spie - the International Society For Optical Engineering. 8295. DOI: 10.1117/12.908925  0.322
2012 Huber-Shalem R, Hadar O, Rotman SR, Huber-Lerner M. Temporal and spatial compression of infrared imagery sequences containing slow moving point targets 2012 Ieee 27th Convention of Electrical and Electronics Engineers in Israel, Ieeei 2012. DOI: 10.1109/EEEI.2012.6377096  0.336
2012 Huber-Lerner M, Hadar O, Rotman SR, Huber-Shalem R. Compression of hyperspectral images containing a sub-pixel target 2012 Ieee 27th Convention of Electrical and Electronics Engineers in Israel, Ieeei 2012. DOI: 10.1109/EEEI.2012.6377033  0.437
2010 Huber-Shalem R, Hadar O, Rotman SR, Huber-Lerner M. Compression of infrared imagery sequences containing a slow-moving point target. Applied Optics. 49: 3798-813. PMID 20648150  0.666
2008 Hadar O, Goldberg E, Topchik E. The influence of image compression on target acquisition Proceedings of Spie - the International Society For Optical Engineering. 6806. DOI: 10.1117/12.767910  0.468
2001 Arbel D, Hadar O, Kopeika NS. Medical image restoration of dynamic lungs using optical transfer function of lung motion. Journal of Biomedical Optics. 6: 193-9. PMID 11375729 DOI: 10.1117/1.1352749  0.337
1998 Succary R, Maltz M, Hadar O, Rotman SR, Kopeika NS. Relative effects of distortion and noise on target acquisition: the advisability of image restoration Optical Engineering. 37: 1914-1922. DOI: 10.1117/1.601897  0.607
1998 Hadar O, Rotman SR, Kopeika NS, Kowalczyk M. Incorporating the entire modulation transfer function into an infrared target acquisition model Infrared Physics & Technology. 39: 307-314. DOI: 10.1016/S1350-4495(98)00014-0  0.66
1997 Succary R, Corse N, Hadar O, Rotman SR, Kopeika NS. Relative effects of blur and noise on target acquisition: The advisability of image restoration Proceedings of Spie - the International Society For Optical Engineering. 3128: 120-129. DOI: 10.1117/12.283921  0.446
1997 Hadar O, Corse N, Khalif R, Neumann Y, Rotman SR, Kopeika NS. Image restoration for target detection: Will it help? Proceedings of Spie - the International Society For Optical Engineering. 3110: 44-55. DOI: 10.1117/12.281364  0.497
1997 Hadar O, Mandelblat A, Sabath R, Kopeika NS, Rotman SR. Influence of sensor motion on infrared target acquisition Infrared Physics & Technology. 38: 373-381. DOI: 10.1016/S1350-4495(97)00023-6  0.676
1996 Hadar O, Rotman SR, Kopeika NS. Incorporating the entire modulation transfer function into a target acquisition model Proceedings of Spie. 2742: 112-121. DOI: 10.1117/12.242988  0.668
1996 Hadar O. Image motion restoration from a sequence of images Optical Engineering. 35: 2898. DOI: 10.1117/1.600959  0.408
1995 Hadar O, Kuntsevitsky A, Wasserblat M, Kopeika NS, Rotman SR. Automatic target recognition during sensor motion and vibration Optical Engineering. 34: 3062-3068. DOI: 10.1117/12.210733  0.664
1995 Rotman SR, Gordon ES, Hadar O, Kopeika NS, George V, Kowalczyk ML. Search strategy for optimal infrared target acquisition performance Infrared Physics & Technology. 36: 1025-1034. DOI: 10.1016/1350-4495(95)00037-Y  0.619
1995 Hadar O, Rotman SR, Kopeika NS. Thermal image target acquisition probabilities in the presence of vibrations Infrared Physics & Technology. 36: 691-702. DOI: 10.1016/1350-4495(94)00108-W  0.638
1994 Hadar O, Rotman SR, Kopeika NS. Target acquisition modeling of forward-motion considerations for airborne reconnaissance over hostile territory Optical Engineering. 33: 3106-3117. DOI: 10.1117/12.177485  0.655
1993 Hadar O, Rotman SR, Kopeika NS. Motion considerations for airborne reconnaissance of a target over hostile territory Proceedings of Spie. 1950: 115-128. DOI: 10.1117/12.156597  0.622
Show low-probability matches.