We are testing a new system for linking grants to scientists.
The funding information displayed below comes from the
NIH Research Portfolio Online Reporting Tools and the
NSF Award Database.
The grant data on this page is limited to grants awarded in the United States and is thus partial. It can nonetheless be used to understand how funding patterns influence mentorship networks and vice-versa, which has deep implications on how research is done.
You can help! If you notice any innacuracies, please
sign in and mark grants as correct or incorrect matches.
Sign in to see low-probability grants and correct any errors in linkage between grants and researchers.
High-probability grants
According to our matching algorithm, Joseph Duman is the likely recipient of the following grants.
Years |
Recipients |
Code |
Title / Keywords |
Matching score |
2005 — 2007 |
Duman, Joseph G |
F32Activity Code Description: To provide postdoctoral research training to individuals to broaden their scientific background and extend their potential for research in specified health-related areas. |
Calcium Dynamics in Secretory Granule-Containing Cells @ University of Washington
DESCRIPTION (provided by applicant): Ca2+ is a second messenger regulating many vital processes; therefore, cellular mechanisms for inciting, terminating, and shaping Ca2+ signals attract intense research. Ca2+ fluxes between the cytosol and both the extracellular space and the endoplasmic reticulum (ER) are the best-understood components of Ca2+ dynamics. However, other organelles, such as secretory granules (SG), may also contribute. It has long been known that SG maintain Ca2+ levels well above those of the cytosol. Recent work demonstrating the presence of functional release channels and emphasizing the highly localized action of Ca2+ signals further argues that SG represent important components of the cellular Ca2+ signaling ma- chinery. A confounding factor has been that SG transport protons as well as Ca2+; this complicates Ca2+ measurements by affecting Ca2+ reporters and altering SG Ca2+ buffering. The research in this proposal will quantitatively dissect global cellular Ca2+ transport in SG-containing cells, characterize the Ca2+ buffering capacity of SG, and measure the response of SG Ca2+ to cell stimuli while measuring pH effects on reporters and SG buffers. Ca2+ and pH photometry using both chemical probes and genetically-encoded reporters will be used in both intact neuroendocrine cells and isolated SG to achieve these goals. The results will lead to better understanding of Ca2+ dynamics in neuroendocrine cells, as well as in other clinically relevant cells in which SG Ca2+ is potentially important, including pancreatic beta-cells and mast cells.
|
0.958 |