
cached image
We are testing a new system for linking grants to scientists.
The funding information displayed below comes from the
NIH Research Portfolio Online Reporting Tools and the
NSF Award Database.
The grant data on this page is limited to grants awarded in the United States and is thus partial. It can nonetheless be used to understand how funding patterns influence mentorship networks and vice-versa, which has deep implications on how research is done.
You can help! If you notice any innacuracies, please
sign in and mark grants as correct or incorrect matches.
Sign in to see low-probability grants and correct any errors in linkage between grants and researchers.
High-probability grants
According to our matching algorithm, Dae-Shik Kim is the likely recipient of the following grants.
Years |
Recipients |
Code |
Title / Keywords |
Matching score |
2002 — 2006 |
Kim, Dae-Shik |
R01Activity Code Description: To support a discrete, specified, circumscribed project to be performed by the named investigator(s) in an area representing his or her specific interest and competencies. |
Points of Contact Between Neuronal Physiology and Fmri @ Boston University Medical Campus |
1 |
2002 — 2004 |
Kim, Dae-Shik |
R01Activity Code Description: To support a discrete, specified, circumscribed project to be performed by the named investigator(s) in an area representing his or her specific interest and competencies. |
Multimodal Mapping of the Human Face Perception @ Boston University Medical Campus
DESCRIPTION (provided by applicant): Magnetic resonance imaging (MRI) provides an unique combination of structural and functional information of the living brain non.invasively, thus yielding information about the where of the human brain's functional architecture. Such localization information alone however must leave pivotal questions about the "HOW" of the human brain's information processing obscured. The overall objective of this proposal is twofold. First, we aim to define a novel method for multimode mapping of the functional and "axonal" signatures of the brain's architecture. To this end, by taking advantage of the ultra-high field 7 Tesla magnet, we hypothesize that "Diffusion Tensor Imaging" (DTI) in combination with sub millimeter resolution functional MRI at 7 Tesla will provide the very first direct correspondences between the functional domains and the underlying neuronal circuitry in humans in vivo. This new method will then be used for the second aim. Here, high resolution Diffusion Tensor Imaging (DTI) will be acquired in conjunction with ultra-high resolution fMRI from the human ventral visual stream including the Fusiform Face Area (FFA). While FFA has been determined as the prime candidate or human face and complex object processing, the actual neural circuitry-giving rising to its computational capabilities remain elusive. We hypothesize that the combined use fMRI and DTI in 7 Tesla as proposed in this study will provide exceedingly fine grained correspondences between functional domains in human occipito-ventral areas and the underlying cortical circuitry. To this end, we specifically hypothesize that the "face" selective vowels in the human Fusiform Face Area (FFA) differ in their connectivity pattern to the rest of the ventral and/or dorsal visual pathway in comparison to the moonfaced selective voxels from the same area. This research network consists of investigators representing a vast range of research expertises including cognitive neuroimaging MR physics, visual neurosciences, computational neurosciences, and fMRI data processing.
|
1 |