Julia Trommershäuser

Affiliations: 
New York University, New York, NY, United States 
Area:
decision-making, visuo-motor control, depth perception, 3D-space perception
Website:
http://www.allpsych.uni-giessen.de/julia/
Google:
"Julia Trommershäuser"
Mean distance: 12.84 (cluster 29)
 
SNBCP
BETA: Related publications

Publications

You can help our author matching system! If you notice any publications incorrectly attributed to this author, please sign in and mark matches as correct or incorrect.

Landy MS, Trommershäuser J, Daw ND. (2012) Dynamic estimation of task-relevant variance in movement under risk. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 32: 12702-11
Schütz AC, Trommershäuser J, Gegenfurtner KR. (2012) Dynamic integration of information about salience and value for saccadic eye movements. Proceedings of the National Academy of Sciences of the United States of America. 109: 7547-52
Glaser C, Trommershäuser J, Mamassian P, et al. (2012) Comparison of the distortion of probability information in decision under risk and an equivalent visual task. Psychological Science. 23: 419-26
Landy MS, Ho YX, Serwe S, et al. (2012) Cues and Pseudocues in Texture and Shape Perception Sensory Cue Integration
Seydell A, Knill DC, Trommershäuser J. (2012) Priors and Learning in Cue Integration Sensory Cue Integration
Trommershäuser J, Körding KP, Landy MS. (2012) Sensory Cue Integration Sensory Cue Integration. 1-464
Maloney LT, Trommershäuser J, Landy MS. (2012) Questions without Words: A Comparison Between Decision Making Under Risk and Movement Planning Under Risk Integrated Models of Cognitive Systems
Serwe S, Körding KP, Trommershäuser J. (2011) Visual-haptic cue integration with spatial and temporal disparity during pointing movements. Experimental Brain Research. 210: 67-80
Drewes J, Trommershäuser J, Gegenfurtner KR. (2011) Parallel visual search and rapid animal detection in natural scenes. Journal of Vision. 11
Seydell A, Knill DC, Trommershäuser J. (2010) Adapting internal statistical models for interpreting visual cues to depth. Journal of Vision. 10: 1.1-27
See more...