Henning Sprekeler
Affiliations: | University of Cambridge, Cambridge, England, United Kingdom |
Area:
Computational NeuroscienceWebsite:
http://learning.eng.cam.ac.uk/Public/Sprekeler/WebHomeGoogle:
"Henning Sprekeler"Mean distance: 13.43 (cluster 17) | S | N | B | C | P |
Parents
Sign in to add mentorLaurenz Wiskott | grad student | 2004-2008 | HU Berlin |
Richard Kempter | post-doc | 2011- | HU Berlin |
Wulfram Gerstner | post-doc | 2008-2011 | EPFL |
BETA: Related publications
See more...
Publications
You can help our author matching system! If you notice any publications incorrectly attributed to this author, please sign in and mark matches as correct or incorrect. |
Naud R, Sprekeler H. (2018) Sparse bursts optimize information transmission in a multiplexed neural code. Proceedings of the National Academy of Sciences of the United States of America |
Chenkov N, Sprekeler H, Kempter R. (2017) Memory replay in balanced recurrent networks. Plos Computational Biology. 13: e1005359 |
Wilmes KA, Sprekeler H, Schreiber S. (2016) Inhibition as a Binary Switch for Excitatory Plasticity in Pyramidal Neurons. Plos Computational Biology. 12: e1004768 |
D'Albis T, Jaramillo J, Sprekeler H, et al. (2015) Inheritance of Hippocampal Place Fields Through Hebbian Learning: Effects of Theta Modulation and Phase Precession on Structure Formation. Neural Computation. 27: 1624-72 |
D'Albis T, Jaramillo J, Sprekeler H, et al. (2015) Inheritance of hippocampal place fields through hebbian learning: Effects of theta modulation and phase precession on structure formation Neural Computation. 27: 1624-1672 |
Rehn EM, Sprekeler H. (2014) Nonlinear supervised locality preserving projections for visual pattern discrimination Proceedings - International Conference On Pattern Recognition. 1568-1573 |
Sprekeler H, Zito T, Wiskott L. (2014) An extension of slow feature analysis for nonlinear blind source separation Journal of Machine Learning Research. 15: 921-947 |
Vogels TP, Froemke RC, Doyon N, et al. (2013) Inhibitory synaptic plasticity: spike timing-dependence and putative network function. Frontiers in Neural Circuits. 7: 119 |
Frémaux N, Sprekeler H, Gerstner W. (2013) Reinforcement learning using a continuous time actor-critic framework with spiking neurons. Plos Computational Biology. 9: e1003024 |
Pawlak V, Greenberg DS, Sprekeler H, et al. (2013) Changing the responses of cortical neurons from sub- to suprathreshold using single spikes in vivo. Elife. 2: e00012 |