Sergey Adamovich Kovalev
Affiliations: | Institute for the Problems of Information Transmission, Moskva, Moscow, Russia |
Google:
"Sergey Kovalev"Bio:
Сергей Адамович Ковалев
Mean distance: 16.53 (cluster 6)
Parents
Sign in to add mentor
BETA: Related publications
See more...
Publications
You can help our author matching system! If you notice any publications incorrectly attributed to this author, please sign in and mark matches as correct or incorrect. |
Berkinblit MB, Kalinin DI, Kovalev SA, et al. (1975) [Study on the Noble model of the synchronization of spontaneously active myocardial cells connected by highly permeable contacts]. Biofizika. 20: 121-5 |
Berkinblit MB, Kovalev SA, Smolianinov VV, et al. (1974) [Excitation propagation in anisotropic syncytia]. Biofizika. 19: 1057-61 |
Berkinblit MB, Kalinin DI, Kovalev SA, et al. (1974) [Letter: Study of electrical interactions of spontaneously active cells based on the Noble model. Cells differing in anionic conductivity]. Biofizika. 19: 771-3 |
Badzhinian SA, Berkinblit MB, Kovalev SA, et al. (1972) [Electrical structure of the region of adhesion of 2 biomolecular phospholipid membranes modified by TTPB]. Biofizika. 17: 428-34 |
Berkinblit MB, Kovalev SA, Smolianinov VV, et al. (1972) [Summation of the effect of electric synapses]. Biofizika. 17: 1129-31 |
Berkinblit MB, Kovalev SA, Smolianinov VV, et al. (1971) [Model of cell contacts (electric properties)]. Biofizika. 16: 504-11 |
Berkinblit MB, Vvedenskaia ND, Gnedenko LS, et al. (1971) [Interaction of nerve impulses in the branching nodes (based on the Hodgkin-Huxley model)]. Biofizika. 16: 103-10 |
Berkinblit MB, Vvedenskaia ND, Gnedenko LS, et al. (1970) [Computer analysis of nerve impulse conduction along fibers with varying degrees of broadening]. Biofizika. 15: 1081-9 |
Berkinblit MB, Dudziavichius I, Kovalev SA, et al. (1970) [Occurrence of local responses in a non-uniform membrane based on the Hodgkin-Huxley model]. Biofizika. 15: 873-80 |
Berkinblit MB, Vvedenskaia ND, Dudziavichus I, et al. (1970) [Mathematical model of excitation propagation in Purkinje fibers]. Biofizika. 15: 521-7 |