Moritz Helias

Affiliations: 
Institute for Neuroscience and Medicine 6 Forschungszentrum Jülich 
Google:
"Moritz Helias"
Mean distance: (not calculated yet)
 
BETA: Related publications

Publications

You can help our author matching system! If you notice any publications incorrectly attributed to this author, please sign in and mark matches as correct or incorrect.

Layer M, Senk J, Essink S, et al. (2022) NNMT: Mean-Field Based Analysis Tools for Neuronal Network Models. Frontiers in Neuroinformatics. 16: 835657
Stapmanns J, Kühn T, Dahmen D, et al. (2022) Erratum: Self-consistent formulations for stochastic nonlinear neuronal dynamics [Phys. Rev. E 101, 042124 (2020)]. Physical Review. E. 105: 059901
Dahmen D, Layer M, Deutz L, et al. (2022) Global organization of neuronal activity only requires unstructured local connectivity. Elife. 11
van Meegen A, Kühn T, Helias M. (2021) Large-Deviation Approach to Random Recurrent Neuronal Networks: Parameter Inference and Fluctuation-Induced Transitions. Physical Review Letters. 127: 158302
Stapmanns J, Hahne J, Helias M, et al. (2021) Event-Based Update of Synapses in Voltage-Based Learning Rules. Frontiers in Neuroinformatics. 15: 609147
Gilson M, Dahmen D, Moreno-Bote R, et al. (2020) The covariance perceptron: A new paradigm for classification and processing of time series in recurrent neuronal networks. Plos Computational Biology. 16: e1008127
Jordan J, Helias M, Diesmann M, et al. (2020) Efficient Communication in Distributed Simulations of Spiking Neuronal Networks With Gap Junctions. Frontiers in Neuroinformatics. 14: 12
Stapmanns J, Kühn T, Dahmen D, et al. (2020) Self-consistent formulations for stochastic nonlinear neuronal dynamics. Physical Review. E. 101: 042124
Dahmen D, Gilson M, Helias M. (2020) Capacity of the covariance perceptron Journal of Physics A. 53: 354002
Helias M, Dahmen D. (2020) Statistical Field Theory for Neural Networks Arxiv: Disordered Systems and Neural Networks
See more...