Year |
Citation |
Score |
2007 |
Boden C, Chan K, Sample PA, Hao J, Lee TW, Zangwill LM, Weinreb RN, Goldbaum MH. Assessing visual field clustering schemes using machine learning classifiers in standard perimetry. Investigative Ophthalmology & Visual Science. 48: 5582-90. PMID 18055807 DOI: 10.1167/Iovs.06-0897 |
0.381 |
|
2005 |
Goldbaum MH, Sample PA, Zhang Z, Chan K, Hao J, Lee TW, Boden C, Bowd C, Bourne R, Zangwill L, Sejnowski T, Spinak D, Weinreb RN. Using unsupervised learning with independent component analysis to identify patterns of glaucomatous visual field defects. Investigative Ophthalmology & Visual Science. 46: 3676-83. PMID 16186349 DOI: 10.1167/Iovs.04-1167 |
0.533 |
|
2004 |
Zangwill LM, Chan K, Bowd C, Hao J, Lee TW, Weinreb RN, Sejnowski TJ, Goldbaum MH. Heidelberg retina tomograph measurements of the optic disc and parapapillary retina for detecting glaucoma analyzed by machine learning classifiers. Investigative Ophthalmology & Visual Science. 45: 3144-51. PMID 15326133 DOI: 10.1167/Iovs.04-0202 |
0.518 |
|
2004 |
Sample PA, Chan K, Boden C, Lee TW, Blumenthal EZ, Weinreb RN, Bernd A, Pascual J, Hao J, Sejnowski T, Goldbaum MH. Using unsupervised learning with variational bayesian mixture of factor analysis to identify patterns of glaucomatous visual field defects. Investigative Ophthalmology & Visual Science. 45: 2596-605. PMID 15277482 DOI: 10.1167/Iovs.03-0343 |
0.52 |
|
2004 |
Bowd C, Zangwill LM, Medeiros FA, Hao J, Chan K, Lee TW, Sejnowski TJ, Goldbaum MH, Sample PA, Crowston JG, Weinreb RN. Confocal scanning laser ophthalmoscopy classifiers and stereophotograph evaluation for prediction of visual field abnormalities in glaucoma-suspect eyes. Investigative Ophthalmology & Visual Science. 45: 2255-62. PMID 15223803 DOI: 10.1167/Iovs.03-1087 |
0.473 |
|
2003 |
Chan K, Lee TW, Sejnowski TJ. Variational Bayesian learning of ICA with missing data Neural Computation. 15: 1991-2011. DOI: 10.1162/08997660360675116 |
0.449 |
|
2003 |
Kwon OW, Chan K, Lee TW. Speech feature analysis using variational Bayesian PCA Ieee Signal Processing Letters. 10: 137-140. DOI: 10.1109/Lsp.2003.810017 |
0.309 |
|
2002 |
Chan K, Lee TW, Sejnowski TJ. Variational Learning of Clusters of Undercomplete Nonsymmetric Independent Components. Journal of Machine Learning Research : Jmlr. 3: 99-114. PMID 21479123 DOI: 10.1162/153244303768966120 |
0.454 |
|
2002 |
Bowd C, Chan K, Zangwill LM, Goldbaum MH, Lee TW, Sejnowski TJ, Weinreb RN. Comparing neural networks and linear discriminant functions for glaucoma detection using confocal scanning laser ophthalmoscopy of the optic disc. Investigative Ophthalmology & Visual Science. 43: 3444-54. PMID 12407155 |
0.349 |
|
2002 |
Chan K, Lee TW, Sample PA, Goldbaum MH, Weinreb RN, Sejnowski TJ. Comparison of machine learning and traditional classifiers in glaucoma diagnosis. Ieee Transactions On Bio-Medical Engineering. 49: 963-74. PMID 12214886 DOI: 10.1109/Tbme.2002.802012 |
0.544 |
|
2002 |
Sample PA, Goldbaum MH, Chan K, Boden C, Lee TW, Vasile C, Boehm AG, Sejnowski T, Johnson CA, Weinreb RN. Using machine learning classifiers to identify glaucomatous change earlier in standard visual fields. Investigative Ophthalmology & Visual Science. 43: 2660-5. PMID 12147600 |
0.489 |
|
2002 |
Goldbaum MH, Sample PA, Chan K, Williams J, Lee TW, Blumenthal E, Girkin CA, Zangwill LM, Bowd C, Sejnowski T, Weinreb RN. Comparing machine learning classifiers for diagnosing glaucoma from standard automated perimetry. Investigative Ophthalmology & Visual Science. 43: 162-9. PMID 11773027 |
0.477 |
|
Show low-probability matches. |