Gal Chechik - Publications

Affiliations: 
Stanford University, Palo Alto, CA 
 Gonda Brain Research Center Bar-Ilan University, Jerusalem, Jerusalem District, Israel 
Area:
Computational Neuroscience
Website:
http://chechiklab.biu.ac.il/

58 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2016 Podvalny E, Yeagle E, Mégevand P, Sarid N, Harel M, Chechik G, Mehta AD, Malach R. Invariant Temporal Dynamics Underlie Perceptual Stability in Human Visual Cortex. Current Biology : Cb. PMID 28041794 DOI: 10.1016/j.cub.2016.11.024  1
2016 Kirsch L, Chechik G. On Expression Patterns and Developmental Origin of Human Brain Regions. Plos Computational Biology. 12: e1005064. PMID 27564987 DOI: 10.1371/journal.pcbi.1005064  1
2016 Beker S, Kellner V, Chechik G, Stern EA. Learning to classify neural activity from a mouse model of Alzheimer's disease amyloidosis versus controls. Alzheimer's & Dementia (Amsterdam, Netherlands). 2: 39-48. PMID 27239535 DOI: 10.1016/j.dadm.2016.01.002  1
2015 Bar-Shira O, Maor R, Chechik G. Gene Expression Switching of Receptor Subunits in Human Brain Development. Plos Computational Biology. 11: e1004559. PMID 26636753 DOI: 10.1371/journal.pcbi.1004559  1
2015 Podvalny E, Noy N, Harel M, Bickel S, Chechik G, Schroeder CE, Mehta AD, Tsodyks M, Malach R. A unifying principle underlying the extracellular field potential spectral responses in the human cortex. Journal of Neurophysiology. 114: 505-19. PMID 25855698 DOI: 10.1152/jn.00943.2014  1
2015 Lakretz Y, Chechik G, Friedmann N, Rosen-Zvi M. Probabilistic graphical models of dyslexia Proceedings of the Acm Sigkdd International Conference On Knowledge Discovery and Data Mining. 2015: 1919-1928. DOI: 10.1145/2783258.2788604  1
2014 Liscovitch N, Bazak L, Levanon EY, Chechik G. Positive correlation between ADAR expression and its targets suggests a complex regulation mediated by RNA editing in the human brain. Rna Biology. 11: 1447-56. PMID 25692240 DOI: 10.4161/15476286.2014.992286  1
2014 Beker S, Goldin M, Menkes-Caspi N, Kellner V, Chechik G, Stern EA. Amyloid-β disrupts ongoing spontaneous activity in sensory cortex. Brain Structure & Function. PMID 25523106 DOI: 10.1007/s00429-014-0963-x  1
2014 Shoval G, Bar-Shira O, Zalsman G, John Mann J, Chechik G. Transitions in the transcriptome of the serotonergic and dopaminergic systems in the human brain during adolescence. European Neuropsychopharmacology : the Journal of the European College of Neuropsychopharmacology. 24: 1123-32. PMID 24721318 DOI: 10.1016/j.euroneuro.2014.02.009  1
2014 Mesnil G, Bordes A, Weston J, Chechik G, Bengio Y. Learning semantic representations of objects and their parts Machine Learning. 94: 281-301. DOI: 10.1007/s10994-013-5336-9  1
2014 Shalit U, Chechik G. Coordinate-descent for learning orthogonal matrices through Givens rotations 31st International Conference On Machine Learning, Icml 2014. 1: 833-845.  1
2013 Liscovitch N, Chechik G. Specialization of gene expression during mouse brain development. Plos Computational Biology. 9: e1003185. PMID 24068900 DOI: 10.1371/journal.pcbi.1003185  1
2013 Liscovitch N, Shalit U, Chechik G. FuncISH: learning a functional representation of neural ISH images. Bioinformatics (Oxford, England). 29: i36-43. PMID 23813005 DOI: 10.1093/bioinformatics/btt207  1
2013 Bar-shira O, Chechik G. Predicting protein-protein interactions in the post synaptic density. Molecular and Cellular Neurosciences. 56: 128-39. PMID 23628905 DOI: 10.1016/j.mcn.2013.04.004  1
2013 Taubman H, Vaadia E, Paz R, Chechik G. A Bayesian approach for characterizing direction tuning curves in the supplementary motor area of behaving monkeys. Journal of Neurophysiology. 109: 2842-51. PMID 23468391 DOI: 10.1152/jn.00449.2012  1
2013 Shalit U, Weinshall D, Chechik G. Modeling musical influence with topic models 30th International Conference On Machine Learning, Icml 2013. 903-911.  1
2012 Kirsch L, Liscovitch N, Chechik G. Localizing genes to cerebellar layers by classifying ISH images. Plos Computational Biology. 8: e1002790. PMID 23284274 DOI: 10.1371/journal.pcbi.1002790  1
2012 Chechik G, Nelken I. Auditory abstraction from spectro-temporal features to coding auditory entities. Proceedings of the National Academy of Sciences of the United States of America. 109: 18968-73. PMID 23112145 DOI: 10.1073/pnas.1111242109  1
2012 Crammer K, Chechik G. Adaptive regularization for weight matrices Proceedings of the 29th International Conference On Machine Learning, Icml 2012. 1: 425-432.  1
2012 Shalit U, Weinshall D, Chechik G. Online learning in the embedded manifold of low-rank matrices Journal of Machine Learning Research. 13: 429-458.  1
2011 Lyon RF, Ponte J, Chechik G. Sparse coding of auditory features for machine hearing in interference Icassp, Ieee International Conference On Acoustics, Speech and Signal Processing - Proceedings. 5876-5879. DOI: 10.1109/ICASSP.2011.5947698  1
2010 Lyon RF, Rehn M, Bengio S, Walters TC, Chechik G. Sound retrieval and ranking using sparse auditory representations. Neural Computation. 22: 2390-416. PMID 20569181 DOI: 10.1162/NECO_a_00011  1
2010 Heitz G, Chechik G. Object separation in X-ray image sets Proceedings of the Ieee Computer Society Conference On Computer Vision and Pattern Recognition. 2093-2100. DOI: 10.1109/CVPR.2010.5539887  1
2010 Chechik G, Sharma V, Shalit U, Bengio S. Large scale online learning of image similarity through ranking Journal of Machine Learning Research. 11: 1109-1135. DOI: 10.1007/978-3-642-02172-5_2  1
2010 Shalit U, Weinshall D, Chechik G. Online learning in the manifold of low-rank matrices Advances in Neural Information Processing Systems 23: 24th Annual Conference On Neural Information Processing Systems 2010, Nips 2010 1
2009 Fiedler D, Braberg H, Mehta M, Chechik G, Cagney G, Mukherjee P, Silva AC, Shales M, Collins SR, van Wageningen S, Kemmeren P, Holstege FC, Weissman JS, Keogh MC, Koller D, et al. Functional organization of the S. cerevisiae phosphorylation network. Cell. 136: 952-63. PMID 19269370 DOI: 10.1016/j.cell.2008.12.039  1
2009 Chechik G, Koller D. Timing of gene expression responses to environmental changes. Journal of Computational Biology : a Journal of Computational Molecular Cell Biology. 16: 279-90. PMID 19193146 DOI: 10.1089/cmb.2008.13TT  1
2009 Chechik G, Sharma V, Shalit U, Bengio S. An online algorithm for large scale image similarity learning Advances in Neural Information Processing Systems 22 - Proceedings of the 2009 Conference. 306-314.  1
2008 Chechik G, Oh E, Rando O, Weissman J, Regev A, Koller D. Activity motifs reveal principles of timing in transcriptional control of the yeast metabolic network. Nature Biotechnology. 26: 1251-9. PMID 18953355 DOI: 10.1038/nbt.1499  1
2008 Chechik G, Ie E, Rehn M, Bengio S, Lyon D. Large-scale content-based audio retrieval from text queries Proceedings of the 1st International Acm Conference On Multimedia Information Retrieval, Mir2008, Co-Located With the 2008 Acm International Conference On Multimedia, Mm'08. 105-112. DOI: 10.1145/1460096.1460115  1
2008 Chechik G, Heitz G, Elidan G, Abbeel P, Koller D. Max-margin classification of data with absent features Journal of Machine Learning Research. 9: 1-21.  1
2007 Nelken I, Chechik G. Information theory in auditory research. Hearing Research. 229: 94-105. PMID 17300891 DOI: 10.1016/j.heares.2007.01.012  1
2007 Chechik G, Leslie C, Noble WS, Rätsch G, Morris Q, Tsuda K. NIPS workshop on new problems and methods in computational biology Bmc Bioinformatics. 8. DOI: 10.1186/1471-2105-8-S10-S1  1
2007 Battle A, Chechik G, Koller D. Temporal and cross-subject probabilistic models for fMRI prediction tasks Advances in Neural Information Processing Systems. 121-128.  1
2007 Chechik G, Heitz G, Elidan G, Abbeel P, Koller D. Max-margin classification of incomplete data Advances in Neural Information Processing Systems. 233-240.  1
2007 Globerson A, Chechik G, Pereira F, Tishby N. Euclidean embedding of co-occurrence data Journal of Machine Learning Research. 8: 2265-2295.  1
2007 Globerson A, Chechik G, Pereira F, Tishby N. Euclidean embedding of co-occurrence data Journal of Machine Learning Research. 8: 2265-2295.  1
2006 Chechik G, Anderson MJ, Bar-Yosef O, Young ED, Tishby N, Nelken I. Reduction of information redundancy in the ascending auditory pathway. Neuron. 51: 359-68. PMID 16880130 DOI: 10.1016/j.neuron.2006.06.030  1
2006 O'Rourke S, Chechik G, Friedman R, Eskin E. Discrete profile comparison using information bottleneck. Bmc Bioinformatics. 7: S8. PMID 16723011 DOI: 10.1186/1471-2105-7-S1-S8  1
2006 Globerson A, Chechik G, Pereira F, Tishby N. Embedding heterogeneous data using statistical models Proceedings of the National Conference On Artificial Intelligence. 2: 1605-1608.  1
2005 Nelken I, Chechik G, Mrsic-Flogel TD, King AJ, Schnupp JW. Encoding stimulus information by spike numbers and mean response time in primary auditory cortex. Journal of Computational Neuroscience. 19: 199-221. PMID 16133819 DOI: 10.1007/s10827-005-1739-3  1
2005 Chechik G, Globerson A, Tishby N, Weiss Y. Information bottleneck for Gaussian variables Journal of Machine Learning Research. 6.  1
2005 O'Rourke S, Chechik G, Friedman R, Eskin E. Discrete profile alignment via constrained information bottleneck Advances in Neural Information Processing Systems 1
2005 Chechik G, Globerson A, Tishby N, Weiss Y. Information bottleneck for Gaussian variables Journal of Machine Learning Research. 6.  1
2004 Solomon I, Maharshak N, Chechik G, Leibovici L, Lubetsky A, Halkin H, Ezra D, Ash N. Applying an artificial neural network to warfarin maintenance dose prediction. The Israel Medical Association Journal : Imaj. 6: 732-5. PMID 15609884  1
2004 Crammer K, Chechik G. A needle in a haystack: Local one-class optimization Proceedings, Twenty-First International Conference On Machine Learning, Icml 2004. 201-208.  1
2003 Chechik G. Spike-timing-dependent plasticity and relevant mutual information maximization. Neural Computation. 15: 1481-510. PMID 12816563 DOI: 10.1162/089976603321891774  1
2003 Chechik G, Tishby N. Extracting relevant structures with side information Advances in Neural Information Processing Systems 1
2003 Avraham H, Chechik G, Ruppin E. Are there representations in embodied evolved agents? Taking measures Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science). 2801: 743-752.  1
2002 Chechik G, Globerson A, Tishby N, Anderson MJ, Young ED, Nelken T. Group redundancy measures reveal redundancy reduction in the auditory pathway Advances in Neural Information Processing Systems 1
2001 Chechik G, Meilijson I, Ruppin E. Effective neuronal learning with ineffective Hebbian learning rules. Neural Computation. 13: 817-40. PMID 11255571 DOI: 10.1162/089976601300014367  1
2001 Chechik G. Spike timing dependent plasticity and mutual information in spiking neurons Neurocomputing. 38: 147-152. DOI: 10.1016/S0925-2312(01)00552-5  1
2001 Chechik G, Tishby N. Temporally dependent plasticity: An information theoretic account Advances in Neural Information Processing Systems 1
2000 Chechik G, Meilijson I, Ruppin E. Neuronal normalization provides effective learning through ineffective synaptic learning rules Neurocomputing. 32: 345-351. DOI: 10.1016/S0925-2312(00)00184-3  1
1999 Chechik G, Meilijson I, Ruppin E. Neuronal regulation: A mechanism for synaptic pruning during brain maturation. Neural Computation. 11: 2061-80. PMID 10578044  1
1999 Chechik G, Meilijson I, Ruppin E. Neuronal regulation: A biologically plausible mechanism for efficient synaptic pruning in development Neurocomputing. 26: 633-639. DOI: 10.1016/S0925-2312(98)00161-1  1
1999 Chechik G, Meilijson I, Ruppin E. Neuronal regulation implements efficient synaptic pruning Advances in Neural Information Processing Systems. 97-103.  1
1998 Chechik G, Meilijson I, Ruppin E. Synaptic pruning in development: a computational account. Neural Computation. 10: 1759-77. PMID 9744896  1
Show low-probability matches.