Year |
Citation |
Score |
2024 |
Khurana S, Varma D, Foltz DR. Contribution of CENP-F to FOXM1-Mediated Discordant Centromere and Kinetochore Transcriptional Regulation. Molecular and Cellular Biology. 1-17. PMID 38779933 DOI: 10.1080/10985549.2024.2350543 |
0.307 |
|
2024 |
Rahi A, Sodhi DK, Magdongon CB, Shakya R, Varma D. Methodology to Create Auxin-Inducible Degron Tagging System to Control Expression of a Target Protein in Mammalian Cell Lines. Bio-Protocol. 14: e4923. PMID 38268977 DOI: 10.21769/BioProtoc.4923 |
0.37 |
|
2023 |
Landeros A, Wallace DA, Rahi A, Magdongon CB, Suraneni P, Amin MA, Chakraborty M, Adam SA, Foltz DR, Varma D. Nuclear lamin A-associated proteins are required for centromere assembly. Biorxiv : the Preprint Server For Biology. PMID 37808683 DOI: 10.1101/2023.09.25.559341 |
0.382 |
|
2023 |
Rahi A, Chakraborty M, Agarwal S, Vosberg KM, Agarwal S, Wang AY, McKenney RJ, Varma D. The Ndc80-Cdt1-Ska1 complex is a central processive kinetochore-microtubule coupling unit. The Journal of Cell Biology. 222. PMID 37265445 DOI: 10.1083/jcb.202208018 |
0.743 |
|
2023 |
Amin MA, Chakraborty M, Wallace DA, Varma D. Coordination between the Ndc80 complex and dynein is essential for microtubule plus-end capture by kinetochores during early mitosis. The Journal of Biological Chemistry. 104711. PMID 37060995 DOI: 10.1016/j.jbc.2023.104711 |
0.555 |
|
2022 |
Afreen S, Rahi A, Landeros AG, Chakraborty M, McKenney RJ, Varma D. In Vitro and In Vivo Approaches to Study Kinetochore-Microtubule Attachments During Mitosis. Methods in Molecular Biology (Clifton, N.J.). 2415: 123-138. PMID 34972950 DOI: 10.1007/978-1-0716-1904-9_9 |
0.724 |
|
2020 |
Rahi A, Chakraborty M, Vosberg K, Varma D. Kinetochore-microtubule coupling mechanisms mediated by the Ska1 complex and Cdt1. Essays in Biochemistry. PMID 32844209 DOI: 10.1042/Ebc20190075 |
0.768 |
|
2019 |
Campbell S, Amin MA, Varma D, Bidone TC. Computational model demonstrates that Ndc80-associated proteins strengthen kinetochore-microtubule attachments in metaphase. Cytoskeleton (Hoboken, N.J.). PMID 31525284 DOI: 10.1002/Cm.21562 |
0.486 |
|
2019 |
Amin MA, Agarwal S, Varma D. MAPping the kinetochore MAP functions required for stabilizing microtubule attachments to chromosomes during metaphase. Cytoskeleton (Hoboken, N.J.). PMID 31454167 DOI: 10.1002/Cm.21559 |
0.557 |
|
2018 |
Suzuki A, Varma D. Cell Division: The Unattached Kinetochore Wears an Expansive RZZ Coat. Current Biology : Cb. 28: R1250-R1252. PMID 30399347 DOI: 10.1016/J.Cub.2018.10.001 |
0.474 |
|
2018 |
Agarwal S, Smith KP, Zhou Y, Suzuki A, McKenney RJ, Varma D. Cdt1 stabilizes kinetochore-microtubule attachments via an Aurora B kinase-dependent mechanism. The Journal of Cell Biology. PMID 30154187 DOI: 10.1083/Jcb.201705127 |
0.723 |
|
2018 |
Amin MA, McKenney RJ, Varma D. Antagonism between the dynein and Ndc80 complexes at kinetochores controls the stability of kinetochore-microtubule attachments during mitosis. The Journal of Biological Chemistry. 293: 10825. PMID 29980652 DOI: 10.1074/Jbc.Aac118.004421 |
0.716 |
|
2018 |
Amin MA, McKenney RJ, Varma D. Antagonism between the dynein and Ndc80 complexes at kinetochores controls the stability of kinetochore-microtubule attachments during mitosis. The Journal of Biological Chemistry. PMID 29475948 DOI: 10.1074/Jbc.Ra117.001699 |
0.768 |
|
2017 |
Amin MA, Varma D. Combining Mitotic Cell Synchronization and High Resolution Confocal Microscopy to Study the Role of Multifunctional Cell Cycle Proteins During Mitosis. Journal of Visualized Experiments : Jove. PMID 29286472 DOI: 10.3791/56513 |
0.426 |
|
2017 |
Agarwal S, Varma D. Targeting mitotic pathways for endocrine-related cancer therapeutics. Endocrine-Related Cancer. PMID 28615236 DOI: 10.1530/Erc-17-0080 |
0.461 |
|
2015 |
Caldas GV, Lynch TR, Anderson R, Afreen S, Varma D, DeLuca JG. The RZZ complex requires the N-terminus of KNL1 to mediate optimal Mad1 kinetochore localization in human cells. Open Biology. 5. PMID 26581576 DOI: 10.1098/Rsob.150160 |
0.538 |
|
2015 |
Agarwal S, Varma D. How the SAC gets the axe: Integrating kinetochore microtubule attachments with spindle assembly checkpoint signaling. Bioarchitecture. 0. PMID 26430805 DOI: 10.1080/19490992.2015.1090669 |
0.513 |
|
2015 |
Coleman KE, Grant GD, Haggerty RA, Brantley K, Shibata E, Workman BD, Dutta A, Varma D, Purvis JE, Cook JG. Sequential replication-coupled destruction at G1/S ensures genome stability. Genes & Development. 29: 1734-46. PMID 26272819 DOI: 10.1101/Gad.263731.115 |
0.337 |
|
2015 |
Afreen S, Varma D. Cell Division: Molecular Pathways for KMN Kinetochore Recruitment. Current Biology : Cb. 25: R332-5. PMID 25898103 DOI: 10.1016/J.Cub.2015.02.041 |
0.52 |
|
2015 |
Rizzardi LF, Coleman KE, Varma D, Matson JP, Oh S, Cook JG. CDK1-dependent inhibition of the E3 ubiquitin ligase CRL4CDT2 ensures robust transition from S Phase to Mitosis. The Journal of Biological Chemistry. 290: 556-67. PMID 25411249 DOI: 10.1074/Jbc.M114.614701 |
0.333 |
|
2013 |
Varma D, Wan X, Cheerambathur D, Gassmann R, Suzuki A, Lawrimore J, Desai A, Salmon ED. Spindle assembly checkpoint proteins are positioned close to core microtubule attachment sites at kinetochores. The Journal of Cell Biology. 202: 735-46. PMID 23979716 DOI: 10.1083/Jcb.201304197 |
0.558 |
|
2012 |
Varma D, Salmon ED. The KMN protein network--chief conductors of the kinetochore orchestra. Journal of Cell Science. 125: 5927-36. PMID 23418356 DOI: 10.1242/Jcs.093724 |
0.536 |
|
2012 |
Varma D, Chandrasekaran S, Sundin LJ, Reidy KT, Wan X, Chasse DA, Nevis KR, DeLuca JG, Salmon ED, Cook JG. Recruitment of the human Cdt1 replication licensing protein by the loop domain of Hec1 is required for stable kinetochore-microtubule attachment. Nature Cell Biology. 14: 593-603. PMID 22581055 DOI: 10.1038/Ncb2489 |
0.5 |
|
2010 |
Gassmann R, Holland AJ, Varma D, Wan X, Civril F, Cleveland DW, Oegema K, Salmon ED, Desai A. Removal of Spindly from microtubule-attached kinetochores controls spindle checkpoint silencing in human cells. Genes & Development. 24: 957-71. PMID 20439434 DOI: 10.1101/Gad.1886810 |
0.586 |
|
2010 |
Mao Y, Varma D, Vallee R. Emerging functions of force-producing kinetochore motors. Cell Cycle (Georgetown, Tex.). 9: 715-9. PMID 20160491 DOI: 10.4161/Cc.9.4.10763 |
0.658 |
|
2010 |
Varma D, Dawn A, Ghosh-Roy A, Weil SJ, Ori-McKenney KM, Zhao Y, Keen J, Vallee RB, Williams JC. Development and application of in vivo molecular traps reveals that dynein light chain occupancy differentially affects dynein-mediated processes. Proceedings of the National Academy of Sciences of the United States of America. 107: 3493-8. PMID 20133681 DOI: 10.1073/Pnas.0908959107 |
0.646 |
|
2008 |
Varma D, Monzo P, Stehman SA, Vallee RB. Direct role of dynein motor in stable kinetochore-microtubule attachment, orientation, and alignment. The Journal of Cell Biology. 182: 1045-54. PMID 18809721 DOI: 10.1083/Jcb.200710106 |
0.723 |
|
2006 |
Vallee RB, Varma D, Dujardin DL. ZW10 function in mitotic checkpoint control, dynein targeting and membrane trafficking: is dynein the unifying theme? Cell Cycle (Georgetown, Tex.). 5: 2447-51. PMID 17102640 DOI: 10.4161/Cc.5.21.3395 |
0.656 |
|
2006 |
Varma D, Dujardin DL, Stehman SA, Vallee RB. Role of the kinetochore/cell cycle checkpoint protein ZW10 in interphase cytoplasmic dynein function. The Journal of Cell Biology. 172: 655-62. PMID 16505164 DOI: 10.1083/Jcb.200510120 |
0.694 |
|
2004 |
Vallee RB, Williams JC, Varma D, Barnhart LE. Dynein: An ancient motor protein involved in multiple modes of transport. Journal of Neurobiology. 58: 189-200. PMID 14704951 DOI: 10.1002/Neu.10314 |
0.573 |
|
Show low-probability matches. |