Stephen B. Long, Ph.D. - Publications

Affiliations: 
Sloan Kettering, New York, NY, United States 
Area:
Structural Biology

35 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2021 Jiang Y, Benz TL, Long SB. Substrate and product complexes reveal mechanisms of Hedgehog acylation by HHAT. Science (New York, N.Y.). 372: 1215-1219. PMID 34112694 DOI: 10.1126/science.abg4998  0.325
2020 Wang C, Baradaran R, Long SB. Structure and Reconstitution of a MCU-EMRE Mitochondrial Ca Uniporter Complex. Journal of Molecular Biology. PMID 32841658 DOI: 10.1016/J.Jmb.2020.08.013  0.406
2020 Wang C, Jacewicz A, Delgado BD, Baradaran R, Long SB. Structures reveal gatekeeping of the mitochondrial Ca uniporter by MICU1-MICU2. Elife. 9. PMID 32667285 DOI: 10.7554/Elife.59991  0.361
2019 Miller AN, Vaisey G, Long SB. Molecular mechanisms of gating in the calcium-activated chloride channel bestrophin. Elife. 8. PMID 30628889 DOI: 10.2210/Pdb6N23/Pdb  0.404
2019 Miller AN, Vaisey G, Long SB. Cryo-EM Structures Reveal Mechanisms of Activation and Inactivation in Bestrophin Channels Biophysical Journal. 116: 160a. DOI: 10.1016/J.Bpj.2018.11.886  0.398
2019 Vaisey G, Miller AN, Long SB. Activation and Inactivation Gating in Bestrophin Ion Channels Biophysical Journal. 116: 396a. DOI: 10.1016/J.Bpj.2018.11.2142  0.318
2018 Vaisey G, Long SB. An allosteric mechanism of inactivation in the calcium-dependent chloride channel BEST1. The Journal of General Physiology. PMID 30237227 DOI: 10.1085/Jgp.201812190  0.392
2018 Hou X, Burstein SR, Long SB. Structures reveal opening of the store-operated calcium channel Orai. Elife. 7. PMID 30160233 DOI: 10.1016/J.Bpj.2018.11.1637  0.393
2018 Baradaran R, Wang C, Siliciano AF, Long SB. Cryo-EM structures of fungal and metazoan mitochondrial calcium uniporters. Nature. PMID 29995857 DOI: 10.1038/S41586-018-0331-8  0.347
2018 Diver MM, Pedi L, Koide A, Koide S, Long SB. Atomic structure of the eukaryotic intramembrane RAS methyltransferase ICMT. Nature. PMID 29342140 DOI: 10.1038/Nature25439  0.402
2018 Miller AN, Vaisey G, Long SB. Author response: Molecular mechanisms of gating in the calcium-activated chloride channel bestrophin Elife. DOI: 10.7554/Elife.43231.049  0.309
2018 Hou X, Burstein SR, Long SB. Author response: Structures reveal opening of the store-operated calcium channel Orai Elife. DOI: 10.7554/Elife.36758.035  0.332
2018 Diver MM, Pedi L, Koide A, Koide S, Long SB. Atomic structure and substrate access in the intramembrane Ras methyltransferase ICMT Nature. DOI: 10.2210/Pdb5Vg9/Pdb  0.34
2018 Vaisey G, Long SB. Structural and Functional Characterization of Bestrophin Channel Inactivation Biophysical Journal. 114: 304a. DOI: 10.1016/J.Bpj.2017.11.1726  0.384
2016 Vaisey G, Miller AN, Long SB. Distinct regions that control ion selectivity and calcium-dependent activation in the bestrophin ion channel. Proceedings of the National Academy of Sciences of the United States of America. PMID 27821745 DOI: 10.1073/Pnas.1614688113  0.352
2015 Hou X, Long SB. Functional Reconstitution and Structural Flexibility of the CRAC Channel Orai Biophysical Journal. 108: 178a. DOI: 10.1016/J.Bpj.2014.11.984  0.417
2014 Kane Dickson V, Pedi L, Long SB. Structure and insights into the function of a Ca(2+)-activated Cl(-) channel. Nature. 516: 213-8. PMID 25337878 DOI: 10.1038/Nature13913  0.395
2014 Diver MM, Long SB. Mutational analysis of the integral membrane methyltransferase isoprenylcysteine carboxyl methyltransferase (ICMT) reveals potential substrate binding sites. The Journal of Biological Chemistry. 289: 26007-20. PMID 25059662 DOI: 10.1074/jbc.M114.585125  0.301
2014 Diver MM, Long SB. Mapping the Substrate Binding Sites of the Integral Membrane Methyltransferase ICMT by Mutational Analysis Biophysical Journal. 106: 674a-675a. DOI: 10.1016/J.Bpj.2013.11.3737  0.428
2014 Long SB. 3D Structures of the Calcium Release-Activated Calcium Channel Orai Biophysical Journal. 106: 220a. DOI: 10.1016/J.Bpj.2013.11.1289  0.348
2013 Diver MM, Long SB. Mutational Analysis of the Integral Membrane Methyltransferase ICMT Biophysical Journal. 104: 233a. DOI: 10.1016/J.Bpj.2012.11.1315  0.438
2012 Hou X, Pedi L, Diver MM, Long SB. Crystal structure of the calcium release-activated calcium channel Orai. Science (New York, N.Y.). 338: 1308-13. PMID 23180775 DOI: 10.1126/Science.1228757  0.371
2012 Miller AN, Long SB. Crystal structure of the human two-pore domain potassium channel K2P1. Science (New York, N.Y.). 335: 432-6. PMID 22282804 DOI: 10.1126/Science.1213274  0.405
2008 Long SB, Long MB, White RR, Sullenger BA. Crystal structure of an RNA aptamer bound to thrombin. Rna (New York, N.Y.). 14: 2504-12. PMID 18971322 DOI: 10.1261/Rna.1239308  0.386
2007 Long SB, Tao X, Campbell EB, MacKinnon R. Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature. 450: 376-82. PMID 18004376 DOI: 10.1038/Nature06265  0.538
2005 Long SB, Campbell EB, Mackinnon R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science (New York, N.Y.). 309: 897-903. PMID 16002581 DOI: 10.1126/Science.1116269  0.546
2005 Long SB, Campbell EB, Mackinnon R. Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science (New York, N.Y.). 309: 903-8. PMID 16002579 DOI: 10.1126/Science.1116270  0.539
2004 Reid TS, Long SB, Beese LS. Crystallographic analysis reveals that anticancer clinical candidate L-778,123 inhibits protein farnesyltransferase and geranylgeranyltransferase-I by different binding modes. Biochemistry. 43: 9000-8. PMID 15248757 DOI: 10.1021/Bi049280B  0.637
2002 Long SB, Casey PJ, Beese LS. Reaction path of protein farnesyltransferase at atomic resolution. Nature. 419: 645-50. PMID 12374986 DOI: 10.1038/Nature00986  0.654
2001 Long SB, Hancock PJ, Kral AM, Hellinga HW, Beese LS. The crystal structure of human protein farnesyltransferase reveals the basis for inhibition by CaaX tetrapeptides and their mimetics. Proceedings of the National Academy of Sciences of the United States of America. 98: 12948-53. PMID 11687658 DOI: 10.1073/Pnas.241407898  0.668
2001 Terry KL, Long SB, Beese LS. 2 Structure of protein farnesyltransferase Enzymes. 21: 19-46. DOI: 10.1016/S1874-6047(01)80015-9  0.667
2001 Long SB, Beese LS. Structures of Protein Farnesyltransferase The Enzymes. 21: 37-48. DOI: 10.1007/978-1-59259-013-1_3  0.657
2000 Long SB, Casey PJ, Beese LS. The basis for K-Ras4B binding specificity to protein farnesyltransferase revealed by 2 A resolution ternary complex structures. Structure (London, England : 1993). 8: 209-22. PMID 10673434 DOI: 10.1016/S0969-2126(00)00096-4  0.657
1998 Long SB, Casey PJ, Beese LS. Cocrystal structure of protein farnesyltransferase complexed with a farnesyl diphosphate substrate. Biochemistry. 37: 9612-8. PMID 9657673 DOI: 10.1021/Bi980708E  0.678
1996 Beese LS, Mao C, Kiefer JR, Long SB, Braman J. Structures of nascent duplex DNA bound to a thermostable DNA polymerase at 1.9 Å resolution Acta Crystallographica Section a Foundations of Crystallography. 52: C153-C153. DOI: 10.1107/S0108767396093129  0.538
Show low-probability matches.