Mario Mulansky - Publications
Affiliations: | 2014-2016 | Institute for complex systems (ISC) | CNR, Florence, Italy, Firenze, Toscana, Italy |
Year | Citation | Score | |||
---|---|---|---|---|---|
2018 | Satuvuori E, Mulansky M, Daffertshofer A, Kreuz T. Using spike train distances to identify the most discriminative neuronal subpopulation. Journal of Neuroscience Methods. PMID 30213547 DOI: 10.1186/1471-2202-14-S1-P35 | 0.753 | |||
2017 | Satuvuori E, Mulansky M, Bozanic N, Malvestio I, Zeldenrust F, Lenk K, Kreuz T. Measures of spike train synchrony for data with multiple time scales. Journal of Neuroscience Methods. PMID 28583477 DOI: 10.1016/J.Jneumeth.2017.05.028 | 0.679 | |||
2017 | Kreuz T, Satuvuori E, Pofahl M, Mulansky M. Leaders and followers: quantifying consistency in spatio-temporal propagation patterns New Journal of Physics. 19: 043028. DOI: 10.1088/1367-2630/Aa68C3 | 0.782 | |||
2016 | Mulansky M, Kreuz T. PySpike—A Python library for analyzing spike train synchrony Softwarex. 5: 183-189. DOI: 10.1016/J.Softx.2016.07.006 | 0.835 | |||
2015 | Kreuz T, Mulansky M, Bozanic N. SPIKY: a graphical user interface for monitoring spike train synchrony. Journal of Neurophysiology. 113: 3432-45. PMID 25744888 DOI: 10.1186/1471-2202-14-S1-P225 | 0.787 | |||
2015 | Kreuz T, Bozanic N, Mulansky M. SPIKE-Synchronization: a parameter-free and time-resolved coincidence detector with an intuitive multivariate extension Bmc Neuroscience. 16. DOI: 10.1186/1471-2202-16-S1-P170 | 0.797 | |||
2015 | Mulansky M, Bozanic N, Kreuz T. Time-resolved and parameter-free measures of spike train synchrony: properties and applications Bmc Neuroscience. 16. DOI: 10.1186/1471-2202-16-S1-P133 | 0.796 | |||
2015 | Mulansky M, Bozanic N, Sburlea A, Kreuz T. A guide to time-resolved and parameter-free measures of spike train synchrony Proceedings of 1st International Conference On Event-Based Control, Communication and Signal Processing, Ebccsp 2015. DOI: 10.1109/EBCCSP.2015.7300693 | 0.788 | |||
Show low-probability matches. |