Haim Sompolinsky - Publications

Affiliations: 
Hebrew University, Jerusalem, Jerusalem, Israel 
Website:
http://neurophysics.huji.ac.il/~haim/

108 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2022 Cohen U, Sompolinsky H. Soft-margin classification of object manifolds. Physical Review. E. 106: 024126. PMID 36109959 DOI: 10.1103/PhysRevE.106.024126  0.695
2022 Hu Y, Sompolinsky H. The spectrum of covariance matrices of randomly connected recurrent neuronal networks with linear dynamics. Plos Computational Biology. 18: e1010327. PMID 35862445 DOI: 10.1371/journal.pcbi.1010327  0.317
2021 Ginosar G, Aljadeff J, Burak Y, Sompolinsky H, Las L, Ulanovsky N. Locally ordered representation of 3D space in the entorhinal cortex. Nature. PMID 34381211 DOI: 10.1038/s41586-021-03783-x  0.585
2020 Advani MS, Saxe AM, Sompolinsky H. High-dimensional dynamics of generalization error in neural networks. Neural Networks : the Official Journal of the International Neural Network Society. 132: 428-446. PMID 33022471 DOI: 10.1016/j.neunet.2020.08.022  0.403
2020 Cohen U, Chung S, Lee DD, Sompolinsky H. Separability and geometry of object manifolds in deep neural networks. Nature Communications. 11: 746. PMID 32029727 DOI: 10.1038/S41467-020-14578-5  0.78
2019 Maor I, Shwartz-Ziv R, Feigin L, Elyada Y, Sompolinsky H, Mizrahi A. Neural Correlates of Learning Pure Tones or Natural Sounds in the Auditory Cortex. Frontiers in Neural Circuits. 13: 82. PMID 32047424 DOI: 10.3389/fncir.2019.00082  0.36
2019 Gjorgjieva J, Meister M, Sompolinsky H. Functional diversity among sensory neurons from efficient coding principles. Plos Computational Biology. 15: e1007476. PMID 31725714 DOI: 10.1371/Journal.Pcbi.1007476  0.538
2018 Landau ID, Sompolinsky H. Coherent chaos in a recurrent neural network with structured connectivity. Plos Computational Biology. 14: e1006309. PMID 30543634 DOI: 10.1371/journal.pcbi.1006309  0.388
2018 Chen X, Mu Y, Hu Y, Kuan AT, Nikitchenko M, Randlett O, Chen AB, Gavornik JP, Sompolinsky H, Engert F, Ahrens MB. Brain-wide Organization of Neuronal Activity and Convergent Sensorimotor Transformations in Larval Zebrafish. Neuron. 100: 876-890.e5. PMID 30473013 DOI: 10.1016/J.Neuron.2018.09.042  0.339
2018 Chung S, Cohen U, Sompolinsky H, Lee DD. Learning Data Manifolds with a Cutting Plane Method. Neural Computation. 1-23. PMID 30148702 DOI: 10.1162/Neco_A_01119  0.753
2018 Chung S, Lee DD, Sompolinsky H. Classification and Geometry of General Perceptual Manifolds Physical Review X. 8. DOI: 10.1103/PhysRevX.8.031003  0.797
2017 Rubin R, Abbott LF, Sompolinsky H. Balanced excitation and inhibition are required for high-capacity, noise-robust neuronal selectivity. Proceedings of the National Academy of Sciences of the United States of America. PMID 29042519 DOI: 10.1073/pnas.1705841114  0.625
2017 Litwin-Kumar A, Harris KD, Axel R, Sompolinsky H, Abbott LF. Optimal Degrees of Synaptic Connectivity. Neuron. PMID 28215558 DOI: 10.1016/J.Neuron.2017.01.030  0.589
2016 Landau ID, Egger R, Dercksen VJ, Oberlaender M, Sompolinsky H. The Impact of Structural Heterogeneity on Excitation-Inhibition Balance in Cortical Networks. Neuron. PMID 27866797 DOI: 10.1016/J.Neuron.2016.10.027  0.346
2016 Naumann EA, Fitzgerald JE, Dunn TW, Rihel J, Sompolinsky H, Engert F. From Whole-Brain Data to Functional Circuit Models: The Zebrafish Optomotor Response. Cell. 167: 947-960.e20. PMID 27814522 DOI: 10.1016/J.Cell.2016.10.019  0.311
2016 Sharpee TO, Destexhe A, Kawato M, Sekulić V, Skinner FK, Wójcik DK, Chintaluri C, Cserpán D, Somogyvári Z, Kim JK, Kilpatrick ZP, Bennett MR, Josić K, Elices I, Arroyo D, ... ... Sompolinsky H, et al. 25th Annual Computational Neuroscience Meeting: CNS-2016 Bmc Neuroscience. 17: 54. PMID 27534393 DOI: 10.1186/S12868-016-0283-6  0.733
2016 Chung S, Lee DD, Sompolinsky H. Linear readout of object manifolds. Physical Review. E. 93: 060301. PMID 27415193 DOI: 10.1103/PhysRevE.93.060301  0.795
2015 Kadmon J, Sompolinsky H. Transition to chaos in random neuronal networks Physical Review X. 5. DOI: 10.1103/PhysRevX.5.041030  0.423
2014 Stern M, Sompolinsky H, Abbott LF. Dynamics of random neural networks with bistable units. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics. 90: 062710. PMID 25615132 DOI: 10.1103/PhysRevE.90.062710  0.602
2014 Gjorgjieva J, Sompolinsky H, Meister M. Benefits of pathway splitting in sensory coding. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 34: 12127-44. PMID 25186757 DOI: 10.1523/Jneurosci.1032-14.2014  0.546
2014 Babadi B, Sompolinsky H. Sparseness and expansion in sensory representations. Neuron. 83: 1213-26. PMID 25155954 DOI: 10.1016/j.neuron.2014.07.035  0.382
2014 Memmesheimer RM, Rubin R, Olveczky BP, Sompolinsky H. Learning precisely timed spikes. Neuron. 82: 925-38. PMID 24768299 DOI: 10.1016/j.neuron.2014.03.026  0.424
2014 Sompolinsky H. Computational neuroscience: beyond the local circuit. Current Opinion in Neurobiology. 25: xiii-xviii. PMID 24602868 DOI: 10.1016/j.conb.2014.02.002  0.405
2014 Pehlevan C, Sompolinsky H. Selectivity and sparseness in randomly connected balanced networks. Plos One. 9: e89992. PMID 24587172 DOI: 10.1371/Journal.Pone.0089992  0.74
2013 Gütig R, Gollisch T, Sompolinsky H, Meister M. Computing complex visual features with retinal spike times. Plos One. 8: e53063. PMID 23301021 DOI: 10.1371/journal.pone.0053063  0.79
2012 Ganguli S, Sompolinsky H. Compressed sensing, sparsity, and dimensionality in neuronal information processing and data analysis. Annual Review of Neuroscience. 35: 485-508. PMID 22483042 DOI: 10.1146/Annurev-Neuro-062111-150410  0.337
2012 Rokni U, Sompolinsky H. How the brain generates movement. Neural Computation. 24: 289-331. PMID 22023199 DOI: 10.1162/NECO_a_00223  0.334
2011 Abbott LF, Rajan K, Sompolinsky H. Interactions between Intrinsic and Stimulus-Evoked Activity in Recurrent Neural Networks The Dynamic Brain: An Exploration of Neuronal Variability and Its Functional Significance. DOI: 10.1093/acprof:oso/9780195393798.003.0004  0.525
2011 Burak Y, Rokni U, Meister M, Sompolinsky H. Reply to Wehrhahn: Experimental requirements for testing the role of peripheral cues in dynamic image stabilization Proceedings of the National Academy of Sciences of the United States of America. 108: E36. DOI: 10.1073/Pnas.1100198108  0.687
2010 Rubin R, Monasson R, Sompolinsky H. Theory of spike timing-based neural classifiers. Physical Review Letters. 105: 218102. PMID 21231357 DOI: 10.1103/Physrevlett.105.218102  0.375
2010 Burak Y, Rokni U, Meister M, Sompolinsky H. Bayesian model of dynamic image stabilization in the visual system. Proceedings of the National Academy of Sciences of the United States of America. 107: 19525-30. PMID 20937893 DOI: 10.1073/Pnas.1006076107  0.666
2010 Rajan K, Abbott LF, Sompolinsky H. Stimulus-dependent suppression of chaos in recurrent neural networks. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics. 82: 011903. PMID 20866644 DOI: 10.1103/PhysRevE.82.011903  0.608
2010 Rajan K, Abbott LF, Sompolinsky H. Stimulus-dependent suppression of intrinsic variability in recurrent neural networks Bmc Neuroscience. 11. DOI: 10.1186/1471-2202-11-S1-O17  0.424
2010 Rajan K, Abbott LF, Sompolinsky H. Inferring stimulus selectivity from the spatial structure of neural network dynamics Advances in Neural Information Processing Systems 23: 24th Annual Conference On Neural Information Processing Systems 2010, Nips 2010 0.527
2009 Gütig R, Sompolinsky H. Time-warp-invariant neuronal processing. Plos Biology. 7: e1000141. PMID 19582146 DOI: 10.1371/journal.pbio.1000141  0.795
2009 Burak Y, Lewallen S, Sompolinsky H. Stimulus-dependent correlations in threshold-crossing spiking neurons. Neural Computation. 21: 2269-308. PMID 19409055 DOI: 10.1162/Neco.2009.07-08-830  0.666
2008 Ganguli S, Huh D, Sompolinsky H. Memory traces in dynamical systems. Proceedings of the National Academy of Sciences of the United States of America. 105: 18970-5. PMID 19020074 DOI: 10.1073/Pnas.0804451105  0.602
2007 Pitkow X, Sompolinsky H, Meister M. A neural computation for visual acuity in the presence of eye movements. Plos Biology. 5: e331. PMID 18162043 DOI: 10.1371/Journal.Pbio.0050331  0.728
2006 Shamir M, Sompolinsky H. Implications of neuronal diversity on population coding. Neural Computation. 18: 1951-86. PMID 16771659 DOI: 10.1162/neco.2006.18.8.1951  0.394
2006 Gütig R, Sompolinsky H. The tempotron: a neuron that learns spike timing-based decisions. Nature Neuroscience. 9: 420-8. PMID 16474393 DOI: 10.1038/nn1643  0.792
2006 Loewenstein Y, Mahon S, Chadderton P, Kitamura K, Sompolinsky H, Yarom Y, Häusser M. Loewenstein et al. reply [2] Nature Neuroscience. 9: 461. DOI: 10.1038/nn0406-461  0.732
2005 Loewenstein Y, Mahon S, Chadderton P, Kitamura K, Sompolinsky H, Yarom Y, Häusser M. Bistability of cerebellar Purkinje cells modulated by sensory stimulation. Nature Neuroscience. 8: 202-11. PMID 15665875 DOI: 10.1038/nn1393  0.788
2005 van Vreeswijk C, Sompolinsky H. Course 9 Irregular activity in large networks of neurons Les Houches Summer School Proceedings. 80: 341-406. DOI: 10.1016/S0924-8099(05)80015-0  0.714
2004 Goldberg JA, Rokni U, Sompolinsky H. Patterns of ongoing activity and the functional architecture of the primary visual cortex. Neuron. 42: 489-500. PMID 15134644 DOI: 10.1016/S0896-6273(04)00197-7  0.593
2004 Shamir M, Sompolinsky H. Nonlinear population codes. Neural Computation. 16: 1105-36. PMID 15130244 DOI: 10.1162/089976604773717559  0.371
2004 White OL, Lee DD, Sompolinsky H. Short-term memory in orthogonal neural networks. Physical Review Letters. 92: 148102. PMID 15089576 DOI: 10.1103/Physrevlett.92.148102  0.493
2004 Kang K, Shapley RM, Sompolinsky H. Information tuning of populations of neurons in primary visual cortex. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 24: 3726-35. PMID 15084652 DOI: 10.1523/JNEUROSCI.4272-03.2004  0.373
2003 Shriki O, Hansel D, Sompolinsky H. Rate models for conductance-based cortical neuronal networks. Neural Computation. 15: 1809-41. PMID 14511514 DOI: 10.1162/08997660360675053  0.782
2003 Loewenstein Y, Sompolinsky H. Temporal integration by calcium dynamics in a model neuron. Nature Neuroscience. 6: 961-7. PMID 12937421 DOI: 10.1038/nn1109  0.762
2003 Gütig R, Aharonov R, Rotter S, Sompolinsky H. Learning input correlations through nonlinear temporally asymmetric Hebbian plasticity. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 23: 3697-714. PMID 12736341 DOI: 10.1523/Jneurosci.23-09-03697.2003  0.33
2003 Litvak V, Sompolinsky H, Segev I, Abeles M. On the transmission of rate code in long feedforward networks with excitatory-inhibitory balance. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 23: 3006-15. PMID 12684488 DOI: 10.1523/Jneurosci.23-07-03006.2003  0.586
2003 Kang K, Shelley M, Sompolinsky H. Mexican hats and pinwheels in visual cortex. Proceedings of the National Academy of Sciences of the United States of America. 100: 2848-53. PMID 12601163 DOI: 10.1073/Pnas.0138051100  0.349
2002 Loewenstein Y, Sompolinsky H. Oscillations by symmetry breaking in homogeneous networks with electrical coupling. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics. 65: 051926. PMID 12059612 DOI: 10.1103/PhysRevE.65.051926  0.758
2002 Sompolinsky H, Yoon H, Kang K, Shamir M. Erratum: Population coding in neuronal systems with correlated noise [Phys. Rev. E64, 051904 (2001)] Physical Review E. 65. DOI: 10.1103/PHYSREVE.65.049902  0.3
2001 Sompolinsky H, Yoon H, Kang K, Shamir M. Population coding in neuronal systems with correlated noise. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics. 64: 051904. PMID 11735965 DOI: 10.1103/Physreve.64.051904  0.347
2001 Loewenstein Y, Yarom Y, Sompolinsky H. The generation of oscillations in networks of electrically coupled cells. Proceedings of the National Academy of Sciences of the United States of America. 98: 8095-100. PMID 11427705 DOI: 10.1073/pnas.131116898  0.771
2001 Rubin J, Lee DD, Sompolinsky H. Equilibrium properties of temporally asymmetric Hebbian plasticity. Physical Review Letters. 86: 364-7. PMID 11177832 DOI: 10.1103/Physrevlett.86.364  0.469
2001 Shriki O, Sompolinsky H, Lee DD. An information maximization approach to overcomplete and recurrent representations Advances in Neural Information Processing Systems 0.649
1999 Dietrich R, Opper M, Sompolinsky H. Statistical mechanics of support vector networks Physical Review Letters. 82: 2975-2978. DOI: 10.1103/Physrevlett.82.2975  0.345
1998 van Vreeswijk C, Sompolinsky H. Chaotic balanced state in a model of cortical circuits. Neural Computation. 10: 1321-71. PMID 9698348 DOI: 10.1162/089976698300017214  0.745
1997 Ben-Yishai R, Hansel D, Sompolinsky H. Traveling waves and the processing of weakly tuned inputs in a cortical network module. Journal of Computational Neuroscience. 4: 57-77. PMID 9046452 DOI: 10.1023/A:1008816611284  0.599
1996 van Vreeswijk C, Sompolinsky H. Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science (New York, N.Y.). 274: 1724-6. PMID 8939866 DOI: 10.1126/science.274.5293.1724  0.756
1996 Hansel D, Sompolinsky H. Chaos and synchrony in a model of a hypercolumn in visual cortex. Journal of Computational Neuroscience. 3: 7-34. PMID 8717487 DOI: 10.1007/Bf00158335  0.644
1996 Mato G, Sompolinsky H. Neural network models of perceptual learning of angle discrimination. Neural Computation. 8: 270-99. PMID 8581884 DOI: 10.1162/Neco.1996.8.2.270  0.376
1995 Barkai N, Seung HS, Sompolinsky H. Local and global convergence of on-line learning. Physical Review Letters. 75: 1415-1418. PMID 10060287 DOI: 10.1103/PhysRevLett.75.1415  0.632
1995 Ben-Yishai R, Bar-Or RL, Sompolinsky H. Theory of orientation tuning in visual cortex. Proceedings of the National Academy of Sciences of the United States of America. 92: 3844-8. PMID 7731993 DOI: 10.1073/Pnas.92.9.3844  0.374
1994 Ginzburg I, Sompolinsky H. Theory of correlations in stochastic neural networks. Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics. 50: 3171-3191. PMID 9962363 DOI: 10.1103/PhysRevE.50.3171  0.342
1994 Sompolinsky H, Tsodyks M. Segmentation by a Network of Oscillators with Stored Memories Neural Computation. 6: 642-657. DOI: 10.1162/neco.1994.6.4.642  0.619
1993 Tsodyks M, Mitkov I, Sompolinsky H. Pattern of synchrony in inhomogeneous networks of oscillators with pulse interactions. Physical Review Letters. 71: 1280-1283. PMID 10055496 DOI: 10.1103/PhysRevLett.71.1280  0.592
1993 Hansel D, Sompolinsky H. Solvable model of spatiotemporal chaos. Physical Review Letters. 71: 2710-2713. PMID 10054756 DOI: 10.1103/Physrevlett.71.2710  0.528
1993 Barkai N, Seung HS, Sompolinsky H. Scaling laws in learning of classification tasks. Physical Review Letters. 70: 3167-3170. PMID 10053792 DOI: 10.1103/PhysRevLett.70.3167  0.613
1993 Seung HS, Sompolinsky H. Simple models for reading neuronal population codes. Proceedings of the National Academy of Sciences of the United States of America. 90: 10749-53. PMID 8248166 DOI: 10.1073/Pnas.90.22.10749  0.717
1993 Grannan ER, Kleinfeld D, Sompolinsky H. Stimulus-Dependent Synchronization of Neuronal Assemblies Neural Computation. 5: 550-569. DOI: 10.1162/neco.1993.5.4.550  0.6
1992 Hansel D, Sompolinsky H. Synchronization and computation in a chaotic neural network. Physical Review Letters. 68: 718-721. PMID 10045972 DOI: 10.1103/Physrevlett.68.718  0.623
1992 Aranson I, Golomb D, Sompolinsky H. Spatial coherence and temporal chaos in macroscopic systems with asymmetrical couplings. Physical Review Letters. 68: 3495-3498. PMID 10045719 DOI: 10.1103/PhysRevLett.68.3495  0.591
1992 Seung HS, Sompolinsky H, Tishby N. Statistical mechanics of learning from examples. Physical Review. A. 45: 6056-6091. PMID 9907706 DOI: 10.1103/PhysRevA.45.6056  0.764
1992 Barkai E, Hansel D, Sompolinsky H. Broken symmetries in multilayered perceptrons. Physical Review. A. 45: 4146-4161. PMID 9907466 DOI: 10.1103/PhysRevA.45.4146  0.441
1992 Golomb D, Hansel D, Shraiman B, Sompolinsky H. Clustering in globally coupled phase oscillators. Physical Review. A. 45: 3516-3530. PMID 9907399 DOI: 10.1103/Physreva.45.3516  0.752
1992 Sompolinsky H, Tsodyks M. PROCESSING OF SENSORY INFORMATION BY A NETWORK OF OSCILLATORS WITH MEMORY International Journal of Neural Systems. 3: 51-56. DOI: 10.1142/S0129065792000371  0.624
1992 Seung HS, Opper M, Sompolinsky H. Query by committee Proceedings of the Fifth Annual Acm Workshop On Computational Learning Theory. 287-294.  0.558
1991 Sompolinsky H, Golomb D, Kleinfeld D. Cooperative dynamics in visual processing. Physical Review. A. 43: 6990-7011. PMID 9905051 DOI: 10.1103/PhysRevA.43.6990  0.663
1990 Sompolinsky H, Tishby N, Seung HS. Learning from examples in large neural networks. Physical Review Letters. 65: 1683-1686. PMID 10042332 DOI: 10.1103/PhysRevLett.65.1683  0.745
1990 Golomb D, Rubin N, Sompolinsky H. Willshaw model: Associative memory with sparse coding and low firing rates. Physical Review. A. 41: 1843-1854. PMID 9903293 DOI: 10.1103/PhysRevA.41.1843  0.696
1990 Barkai E, Kanter I, Sompolinsky H. Properties of sparsely connected excitatory neural networks. Physical Review. A. 41: 590-597. PMID 9903143 DOI: 10.1103/Physreva.41.590  0.417
1990 Sompolinsky H, Golomb D, Kleinfeld D. Global processing of visual stimuli in a neural network of coupled oscillators. Proceedings of the National Academy of Sciences of the United States of America. 87: 7200-4. PMID 2402502 DOI: 10.1073/Pnas.87.18.7200  0.743
1990 Sompolinsky H, Tishby N. Learning in a two-layer neural network of edge detectors Epl. 13: 567-572. DOI: 10.1209/0295-5075/13/6/016  0.629
1989 Rubin N, Sompolinsky H. Neural networks with low local firing rates Epl. 10: 465-470. DOI: 10.1209/0295-5075/10/5/013  0.622
1988 Sompolinsky H, Crisanti A, Sommers HJ. Chaos in random neural networks. Physical Review Letters. 61: 259-262. PMID 10039285 DOI: 10.1103/PhysRevLett.61.259  0.348
1988 Crisanti A, Sompolinsky H. Dynamics of spin systems with randomly asymmetric bonds: Ising spins and Glauber dynamics. Physical Review. A. 37: 4865-4874. PMID 9899634 DOI: 10.1103/PhysRevA.37.4865  0.304
1988 Kleinfeld D, Sompolinsky H. Associative neural network model for the generation of temporal patterns. Theory and application to central pattern generators. Biophysical Journal. 54: 1039-51. PMID 3233265 DOI: 10.1016/S0006-3495(88)83041-8  0.617
1988 Sompolinsky H. Statistical Mechanics of Neural Networks Physics Today. 41: 70-80. DOI: 10.1063/1.881142  0.409
1987 Kotliar G, Sompolinsky H, Zippelius A. Rotational symmetry breaking in Heisenberg spin glasses: A microscopic approach. Physical Review. B, Condensed Matter. 35: 311-328. PMID 9940601 DOI: 10.1103/PhysRevB.35.311  0.437
1987 Crisanti A, Sompolinsky H. Dynamics of spin systems with randomly asymmetric bonds: Langevin dynamics and a spherical model. Physical Review. A. 36: 4922-4939. PMID 9898751 DOI: 10.1103/PhysRevA.36.4922  0.356
1987 Amit DJ, Gutfreund H, Sompolinsky H. Information storage in neural networks with low levels of activity. Physical Review. A. 35: 2293-2303. PMID 9898407 DOI: 10.1103/PhysRevA.35.2293  0.4
1987 Amit DJ, Gutfreund H, Sompolinsky H. Statistical mechanics of neural networks near saturation Annals of Physics. 173: 30-67. DOI: 10.1016/0003-4916(87)90092-3  0.388
1986 Sompolinsky H, Kanter I. Temporal association in asymmetric neural networks. Physical Review Letters. 57: 2861-2864. PMID 10033885 DOI: 10.1103/PhysRevLett.57.2861  0.407
1986 Sompolinsky H. Neural networks with nonlinear synapses and a static noise. Physical Review. A. 34: 2571-2574. PMID 9897569 DOI: 10.1103/PhysRevA.34.2571  0.344
1985 Amit DJ, Gutfreund H, Sompolinsky H. Storing infinite numbers of patterns in a spin-glass model of neural networks. Physical Review Letters. 55: 1530-1533. PMID 10031847 DOI: 10.1103/PhysRevLett.55.1530  0.313
1985 Fisher DS, Sompolinsky H. Scaling in spin-glasses. Physical Review Letters. 54: 1063-1066. PMID 10030919 DOI: 10.1103/PhysRevLett.54.1063  0.465
1985 Amit DJ, Gutfreund H, Sompolinsky H. Spin-glass models of neural networks. Physical Review. A. 32: 1007-1018. PMID 9896156 DOI: 10.1103/PhysRevA.32.1007  0.339
1984 Sompolinsky H, Kotliar G, Zippelius A. Exchange stiffness and macroscopic anisotropy in Heisenberg spin-glasses Physical Review Letters. 52: 392-395. DOI: 10.1103/Physrevlett.52.392  0.515
1983 Sompolinsky H, Zippelius A. Fluctuations in short-range spin-glasses Physical Review Letters. 50: 1297-1300. DOI: 10.1103/PhysRevLett.50.1297  0.501
1983 John S, Sompolinsky H, Stephen MJ. Localization in a disordered elastic medium near two dimensions Physical Review B. 27: 5592-5603. DOI: 10.1103/Physrevb.27.5592  0.448
1983 Dasgupta C, Sompolinsky H. Equivalence of statistical-mechanical and dynamic descriptions of the infinite-range Ising spin-glass Physical Review B. 27: 4511-4514. DOI: 10.1103/Physrevb.27.4511  0.539
1982 Sompolinsky H, Zippelius A. Relaxational dynamics of the Edwards-Anderson model and the mean-field theory of spin-glasses Physical Review B. 25: 6860-6875. DOI: 10.1103/PhysRevB.25.6860  0.524
1982 Henley CL, Sompolinsky H, Halperin BI. Spin-resonance frequencies in spin-glasses with random anisotropies Physical Review B. 25: 5849-5855. DOI: 10.1103/Physrevb.25.5849  0.637
1982 Sompolinsky H, Zippelius A. Relaxational dynamics of the infinite-ranged spin glass with n-component spins Journal of Physics C: Solid State Physics. 15: L1059-L1064. DOI: 10.1088/0022-3719/15/30/003  0.444
1981 Sompolinsky H, Zippelius A. Dynamic Theory of the Spin-Glass Phase Physical Review Letters. 47: 359-362. DOI: 10.1103/PhysRevLett.47.359  0.517
Show low-probability matches.