Year |
Citation |
Score |
2019 |
Vapnik VN. Complete Statistical Theory of Learning Automation and Remote Control. 80: 1949-1975. DOI: 10.1134/S000511791911002X |
0.383 |
|
2019 |
Vapnik V, Izmailov R. Rethinking statistical learning theory: learning using statistical invariants Machine Learning. 108: 381-423. DOI: 10.1007/S10994-018-5742-0 |
0.498 |
|
2017 |
Vapnik V, Izmailov R. Knowledge transfer in SVM and neural networks Annals of Mathematics and Artificial Intelligence. 81: 3-19. DOI: 10.1007/S10472-017-9538-X |
0.363 |
|
2011 |
Nouretdinov I, Costafreda SG, Gammerman A, Chervonenkis AY, Vovk V, Vapnik V, Fu CHY. Machine learning classification with confidence: application of transductive conformal predictors to MRI-based diagnostic and prognostic markers in depression. Neuroimage. 56: 809-813. PMID 20483379 DOI: 10.1016/J.Neuroimage.2010.05.023 |
0.378 |
|
2009 |
Vapnik V, Vashist A. 2009 Special Issue: A new learning paradigm: Learning using privileged information Neural Networks. 22: 544-557. PMID 19632812 DOI: 10.1016/J.Neunet.2009.06.042 |
0.445 |
|
2009 |
Corfield D, Schölkopf B, Vapnik V. Falsificationism and statistical learning theory: Comparing the popper and vapnik-chervonenkis dimensions Journal For General Philosophy of Science. 40: 51-58. DOI: 10.1007/S10838-009-9091-3 |
0.504 |
|
2008 |
El-Yaniv R, Pechyony D, Vapnik V. Large margin vs. large volume in transductive learning Machine Learning. 72: 173-188. DOI: 10.1007/S10994-008-5071-9 |
0.43 |
|
2003 |
Bi J, Vapnik VN. Learning with rigorous support vector machines Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science). 2777: 243-257. |
0.363 |
|
2002 |
Chapelle O, Vapnik V, Bengio Y. Model selection for small sample regression Machine Learning. 48: 9-23. DOI: 10.1023/A:1013943418833 |
0.4 |
|
2002 |
Chapelle O, Vapnik V, Bousquet O, Mukherjee S. Choosing multiple parameters for support vector machines Machine Learning. 46: 131-159. DOI: 10.1023/A:1012450327387 |
0.345 |
|
2000 |
Vapnik V, Chapelle O. Bounds on Error Expectation for Support Vector Machines Neural Computation. 12: 2013-2036. PMID 10976137 DOI: 10.1162/089976600300015042 |
0.385 |
|
1999 |
Cherkassky V, Shao X, Mulier FM, Vapnik VN. Model complexity control for regression using VC generalization bounds. Ieee Transactions On Neural Networks / a Publication of the Ieee Neural Networks Council. 10: 1075-89. PMID 18252610 DOI: 10.1109/72.788648 |
0.353 |
|
1999 |
Chapelle O, Haffner P, Vapnik VN. Support vector machines for histogram-based image classification. Ieee Transactions On Neural Networks / a Publication of the Ieee Neural Networks Council. 10: 1055-64. PMID 18252608 DOI: 10.1109/72.788646 |
0.316 |
|
1999 |
Drucker H, Wu D, Vapnik VN. Support vector machines for spam categorization. Ieee Transactions On Neural Networks / a Publication of the Ieee Neural Networks Council. 10: 1048-54. PMID 18252607 DOI: 10.1109/72.788645 |
0.366 |
|
1999 |
Vapnik VN. An overview of statistical learning theory. Ieee Transactions On Neural Networks / a Publication of the Ieee Neural Networks Council. 10: 988-99. PMID 18252602 DOI: 10.1109/72.788640 |
0.481 |
|
1998 |
Guyon I, Makhoul J, Schwartz R, Vapnik V. What size test set gives good error rate estimates Ieee Transactions On Pattern Analysis and Machine Intelligence. 20: 52-64. DOI: 10.1109/34.655649 |
0.314 |
|
1997 |
Schölkopf B, Sung KK, Burges CJC, Girosi F, Niyogi P, Poggio T, Vapnik V. Comparing support vector machines with gaussian kernels to radial basis function classifiers Ieee Transactions On Signal Processing. 45: 2758-2765. DOI: 10.1109/78.650102 |
0.437 |
|
1995 |
Cortes C, Vapnik V. Support-Vector Networks Machine Learning. 20: 273-297. DOI: 10.1023/A:1022627411411 |
0.436 |
|
1994 |
Drucker H, Cortes C, Jackel LD, LeCun Y, Vapnik V. Boosting and Other Ensemble Methods Neural Computation. 6: 1289-1301. DOI: 10.1162/Neco.1994.6.6.1289 |
0.338 |
|
1994 |
Vapnik V, Levin E, Cun YL. Measuring the VC-Dimension of a Learning Machine Neural Computation. 6: 851-876. DOI: 10.1162/Neco.1994.6.5.851 |
0.44 |
|
1993 |
Vapnik V, Bottou L. Local algorithms for pattern recognition and dependencies estimation Neural Computation. 5: 893-909. DOI: 10.1162/Neco.1993.5.6.893 |
0.423 |
|
1993 |
Vapnik V. Three fundamental concepts of the capacity of learning machines Physica a: Statistical Mechanics and Its Applications. 200: 538-544. DOI: 10.1016/0378-4371(93)90558-L |
0.36 |
|
1992 |
Bottou L, Vapnik V. Local learning algorithms Neural Computation. 4: 888-900. DOI: 10.1162/Neco.1992.4.6.888 |
0.375 |
|
1968 |
Vapnik VN, Lerner AY, Chervonenkis AY. Learning Methods in Problems of Diagnosis Ifac Proceedings Volumes. 2: 741-747. DOI: 10.1016/S1474-6670(17)68922-5 |
0.395 |
|
Show low-probability matches. |