Bruno Cessac - Publications

Affiliations: 
INRIA Sophia Antipolis, Biot, Provence-Alpes-Côte d'Azur, France 
Website:
http://www.inln.cnrs.fr/rubrique.php3?id_rubrique=40

53 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2022 Cessac B. Retinal Processing: Insights from Mathematical Modelling. Journal of Imaging. 8. PMID 35049855 DOI: 10.3390/jimaging8010014  0.317
2021 Cessac B, Ampuero I, Cofré R. Linear Response of General Observables in Spiking Neuronal Network Models. Entropy (Basel, Switzerland). 23. PMID 33514033 DOI: 10.3390/e23020155  0.776
2020 Cofré R, Maldonado C, Cessac B. Thermodynamic Formalism in Neuronal Dynamics and Spike Train Statistics. Entropy (Basel, Switzerland). 22. PMID 33266513 DOI: 10.3390/e22111330  0.743
2020 Vohryzek J, Deco G, Cessac B, Kringelbach ML, Cabral J. Ghost Attractors in Spontaneous Brain Activity: Recurrent Excursions Into Functionally-Relevant BOLD Phase-Locking States. Frontiers in Systems Neuroscience. 14: 20. PMID 32362815 DOI: 10.3389/Fnsys.2020.00020  0.375
2019 Cessac B. Linear response in neuronal networks: From neurons dynamics to collective response. Chaos (Woodbury, N.Y.). 29: 103105. PMID 31675822 DOI: 10.1063/1.5111803  0.443
2019 Matzakos-Karvouniari D, Gil L, Orendorff E, Marre O, Picaud S, Cessac B. A biophysical model explains the spontaneous bursting behavior in the developing retina. Scientific Reports. 9: 1859. PMID 30755684 DOI: 10.1038/S41598-018-38299-4  0.356
2017 Cessac B, Kornprobst P, Kraria S, Nasser H, Pamplona D, Portelli G, Viéville T. PRANAS: A New Platform for Retinal Analysis and Simulation. Frontiers in Neuroinformatics. 11: 49. PMID 28919854 DOI: 10.3389/Fninf.2017.00049  0.67
2016 Cessac B, Le Ny A, Löcherbach E. On the Mathematical Consequences of Binning Spike Trains. Neural Computation. 1-25. PMID 27764593 DOI: 10.1162/Neco_A_00898  0.397
2016 Atay FM, Banisch S, Blanchard P, Cessac B, Olbrich E, Volchenkov D. Perspectives on Multi-Level Dynamics The Interdisciplinary Journal of Discontinuity, Nonlinearity, and Complexity. 5: 313-339. DOI: 10.5890/Dnc.2016.09.009  0.361
2015 Pamplona D, Hilgen G, Cessac B, Sernagor E, Kornprobst P. A super-resolution approach for receptive fields estimation of neuronal ensembles Bmc Neuroscience. 16. DOI: 10.1186/1471-2202-16-S1-P130  0.376
2014 Cofré R, Cessac B. Exact computation of the maximum-entropy potential of spiking neural-network models. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics. 89: 052117. PMID 25353749 DOI: 10.1103/Physreve.89.052117  0.539
2014 Nasser H, Cessac B. Parameter estimation for spatio-temporal maximum entropy distributions application to neural spike trains Entropy. 16: 2244-2277. DOI: 10.3390/E16042244  0.445
2013 Naudé J, Cessac B, Berry H, Delord B. Effects of cellular homeostatic intrinsic plasticity on dynamical and computational properties of biological recurrent neural networks. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 33: 15032-43. PMID 24048833 DOI: 10.1523/Jneurosci.0870-13.2013  0.549
2013 Cessac B, Cofré R. Spike train statistics and Gibbs distributions. Journal of Physiology, Paris. 107: 360-8. PMID 23501168 DOI: 10.1016/J.Jphysparis.2013.03.001  0.477
2013 Muratori M, Cessac B. Beyond dynamical mean-field theory of neural networks Bmc Neuroscience. 14. DOI: 10.1186/1471-2202-14-S1-P60  0.491
2013 Taouali W, Cessac B. A maximum likelihood estimator of neural network synaptic weights Bmc Neuroscience. 14. DOI: 10.1186/1471-2202-14-S1-P59  0.501
2013 Nasser H, Kraria S, Cessac B. EnaS: a new software for neural population analysis in large scale spiking networks Bmc Neuroscience. 14. DOI: 10.1186/1471-2202-14-S1-P57  0.512
2013 Nasser H, Marre O, Cessac B. Spatio-temporal spike train analysis for large scale networks using the maximum entropy principle and Monte Carlo method Journal of Statistical Mechanics: Theory and Experiment. 2013. DOI: 10.1088/1742-5468/2013/03/P03006  0.535
2013 Cofré R, Cessac B. Dynamics and spike trains statistics in conductance-based integrate-and-fire neural networks with chemical and electric synapses Chaos, Solitons & Fractals. 50: 13-31. DOI: 10.1016/j.chaos.2012.12.006  0.41
2013 Cofre R, Cessac B. Dynamics and spike trains statistics in conductance-based Integrate-and-Fire neural networks with chemical and electric synapses Bmc Neuroscience. 14. DOI: 10.1016/J.Chaos.2012.12.006  0.574
2012 Rostro-Gonzalez H, Cessac B, Vieville T. Parameter estimation in spiking neural networks: a reverse-engineering approach. Journal of Neural Engineering. 9: 026024. PMID 22419215 DOI: 10.1088/1741-2560/9/2/026024  0.75
2012 Vasquez JC, Marre O, Palacios AG, Berry MJ, Cessac B. Gibbs distribution analysis of temporal correlations structure in retina ganglion cells. Journal of Physiology, Paris. 106: 120-7. PMID 22115900 DOI: 10.1016/J.Jphysparis.2011.11.001  0.408
2012 Cessac B, Salas R, Viéville T. Using event-based metric for event-based neural network weight adjustment Esann 2012 Proceedings, 20th European Symposium On Artificial Neural Networks, Computational Intelligence and Machine Learning. 591-596.  0.682
2011 Cessac B. Statistics of spike trains in conductance-based neural networks: Rigorous results. Journal of Mathematical Neuroscience. 1: 8. PMID 22657160 DOI: 10.1186/2190-8567-1-8  0.555
2011 Rostro-Gonzalez H, Cessac B, Girau B, Torres-Huitzil C. The role of the asymptotic dynamics in the design of FPGA-based hardware implementations of gIF-type neural networks. Journal of Physiology, Paris. 105: 91-7. PMID 21964248 DOI: 10.1016/J.Jphysparis.2011.09.004  0.448
2011 Cessac B. A discrete time neural network model with spiking neurons: II: dynamics with noise. Journal of Mathematical Biology. 62: 863-900. PMID 20658138 DOI: 10.1007/S00285-010-0358-4  0.536
2010 Cessac B, Paugam-Moisy H, Viéville T. Overview of facts and issues about neural coding by spikes. Journal of Physiology, Paris. 104: 5-18. PMID 19925865 DOI: 10.1016/J.Jphysparis.2009.11.002  0.572
2010 Cessac B. A view of neural networks as dynamical systems International Journal of Bifurcation and Chaos. 20: 1585-1629. DOI: 10.1142/S0218127410026721  0.559
2009 Faugeras O, Touboul J, Cessac B. A constructive mean-field analysis of multi-population neural networks with random synaptic weights and stochastic inputs. Frontiers in Computational Neuroscience. 3: 1. PMID 19255631 DOI: 10.3389/Neuro.10.001.2009  0.478
2009 Rostro-Gonzalez H, Cessac B, Vasquez JC, Viéville T. Back-engineering of spiking neural networks parameters Bmc Neuroscience. 10. DOI: 10.1186/1471-2202-10-S1-P289  0.762
2009 Vasquez JC, Cessac B, Rostro-Gonzalez H, Vieville T. How Gibbs distributions may naturally arise from synaptic adaptation mechanisms Bmc Neuroscience. 10. DOI: 10.1186/1471-2202-10-S1-P213  0.555
2009 Cessac B, Viéville T. Parametric estimation of spike train statistics Bmc Neuroscience. 10. DOI: 10.1186/1471-2202-10-S1-P165  0.728
2009 Cessac B, Rostro H, Vasquez JC, Viéville T. How Gibbs distributions may naturally arise from synaptic adaptation mechanisms. A model-based argumentation Journal of Statistical Physics. 136: 565-602. DOI: 10.1007/S10955-009-9786-1  0.752
2008 Cessac B, Viéville T. On dynamics of integrate-and-fire neural networks with conductance based synapses. Frontiers in Computational Neuroscience. 2: 2. PMID 18946532 DOI: 10.3389/Neuro.10.002.2008  0.77
2008 Siri B, Berry H, Cessac B, Delord B, Quoy M. A mathematical analysis of the effects of Hebbian learning rules on the dynamics and structure of discrete-time random recurrent neural networks. Neural Computation. 20: 2937-66. PMID 18624656 DOI: 10.1162/Neco.2008.05-07-530  0.5
2008 Cessac B. A discrete time neural network model with spiking neurons. Rigorous results on the spontaneous dynamics. Journal of Mathematical Biology. 56: 311-45. PMID 17874106 DOI: 10.1007/S00285-007-0117-3  0.536
2007 Siri B, Quoy M, Delord B, Cessac B, Berry H. Effects of Hebbian learning on the dynamics and structure of random networks with inhibitory and excitatory neurons. Journal of Physiology, Paris. 101: 136-48. PMID 18042357 DOI: 10.1016/J.Jphysparis.2007.10.003  0.503
2007 Cessac B, Viéville T. Revisiting time discretisation of spiking network models Bmc Neuroscience. 8. DOI: 10.1186/1471-2202-8-S2-P76  0.777
2007 Samuelides M, Cessac B. Random recurrent neural networks dynamics European Physical Journal: Special Topics. 142: 89-122. DOI: 10.1140/Epjst/E2007-00059-1  0.74
2007 Cessac B, Samuelides M. From neuron to neural networks dynamics European Physical Journal: Special Topics. 142: 7-88. DOI: 10.1140/Epjst/E2007-00058-2  0.726
2007 Cessac B, Daucé E, Perrinet L, Samuelides M. Introduction European Physical Journal: Special Topics. 142: 1-5. DOI: 10.1140/epjst/e2007-00057-3  0.657
2007 Cessac B, Sepulchre JA. Linear response, susceptibility and resonances in chaotic toy models Physica D: Nonlinear Phenomena. 225: 13-28. DOI: 10.1016/J.Physd.2006.09.034  0.46
2004 Cessac B, Sepulchre JA. Stable resonances and signal propagation in a chaotic network of coupled units. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics. 70: 056111. PMID 15600696 DOI: 10.1103/PhysRevE.70.056111  0.326
2004 Cessac B, Blanchard P, Krüger T, Meunier JL. Self-Organized Criticality and thermodynamic formalism Journal of Statistical Physics. 115: 1283-1326. DOI: 10.1023/B:Joss.0000028057.16662.89  0.316
2000 Blanchard P, Cessac B, Krüger T. What can one learn about self-organized criticality from dynamical systems theory? Journal of Statistical Physics. 98: 375-404. DOI: 10.1023/A:1018639308981  0.367
1998 Samuelides M, Doyon B, Cessac B, Quoy M, Dauce E. Self-organization and dynamics reduction in recurrent networks: stimulus presentation and learning. Neural Networks : the Official Journal of the International Neural Network Society. 11: 521-533. PMID 12662827 DOI: 10.1016/S0893-6080(97)00131-7  0.697
1997 Blanchard P, Cessac B, Krüger T. A dynamical system approach to SOC models of Zhang's type Journal of Statistical Physics. 88: 307-318. DOI: 10.1007/Bf02508473  0.375
1995 Doyon B, Cessac B, Quoy M, Samuelides M. Mean-field equations, bifurcation map and chaos in discrete time, continuous state, random neural networks. Acta Biotheoretica. 43: 169-75. PMID 7709685 DOI: 10.1007/Bf00709441  0.706
1994 Cessac B. Occurrence of chaos and AT line in random neural networks Epl. 26: 577-582. DOI: 10.1209/0295-5075/26/8/004  0.343
1994 Cessac B. Absolute stability criterion for discrete time neural networks Journal of Physics a: Mathematical and General. 27: L927-L930. DOI: 10.1088/0305-4470/27/24/004  0.37
1994 Cessac B, Doyon B, Quoy M, Samuelides M. Mean-field equations, bifurcation map and route to chaos in discrete time neural networks Physica D: Nonlinear Phenomena. 74: 24-44. DOI: 10.1016/0167-2789(94)90024-8  0.719
1994 Doyon B, Cessac B, Quoy M, Samuelides M. On bifurcations and chaos in random neural networks Acta Biotheoretica. 42: 215-225. DOI: 10.1007/Bf00709492  0.722
1993 DOYON B, CESSAC B, QUOY M, SAMUELIDES M. CONTROL OF THE TRANSITION TO CHAOS IN NEURAL NETWORKS WITH RANDOM CONNECTIVITY International Journal of Bifurcation and Chaos. 3: 279-291. DOI: 10.1142/S0218127493000222  0.727
Show low-probability matches.