Year |
Citation |
Score |
2016 |
Zhu Y, Kiros R, Zemel R, Salakhutdinov R, Urtasun R, Torralba A, Fidler S. Aligning books and movies: Towards story-like visual explanations by watching movies and reading books Proceedings of the Ieee International Conference On Computer Vision. 11: 19-27. DOI: 10.1109/ICCV.2015.11 |
0.592 |
|
2014 |
Kiros R, Salakhutdinov R, Zemel R. Multimodal neural language models 31st International Conference On Machine Learning, Icml 2014. 3: 2012-2025. |
0.572 |
|
2014 |
Snoek J, Swersky K, Zemel R, Adams RP. Input warping for Bayesian optimization of non-stationary functions 31st International Conference On Machine Learning, Icml 2014. 5: 3654-3662. |
0.594 |
|
2014 |
Volkovs MN, Zemel RS. New learning methods for supervised and unsupervised preference aggregation Journal of Machine Learning Research. 15: 1135-1176. |
0.741 |
|
2014 |
Kiros R, Zemel RS, Salakhutdinov R. A multiplicative model for learning distributed text-based attribute representations Advances in Neural Information Processing Systems. 3: 2348-2356. |
0.65 |
|
2013 |
Volkovs MN, Zemel RS. CRF framework for supervised preference aggregation International Conference On Information and Knowledge Management, Proceedings. 89-98. DOI: 10.1145/2505515.2505713 |
0.71 |
|
2013 |
Snoek J, Adams RP, Zemel RS. A determinantal point process latent variable model for inhibition in neural spiking data Advances in Neural Information Processing Systems. |
0.611 |
|
2012 |
Volkovs MN, Larochelle H, Zemel RS. Learning to rank by aggregating expert preferences Acm International Conference Proceeding Series. 843-851. DOI: 10.1145/2396761.2396868 |
0.742 |
|
2012 |
Volkovs MN, Zemel RS. A flexible generative model for preference aggregation Www'12 - Proceedings of the 21st Annual Conference On World Wide Web. 479-488. DOI: 10.1145/2187836.2187902 |
0.724 |
|
2012 |
Volkovs MN, Zemel RS. Efficient sampling for bipartite matching problems Advances in Neural Information Processing Systems. 2: 1313-1321. |
0.687 |
|
2012 |
Swersky K, Tarlow D, Sutskever I, Salakhutdinov R, Zemel RS, Adams RP. Cardinality restricted boltzmann machines Advances in Neural Information Processing Systems. 4: 3293-3301. |
0.704 |
|
2012 |
Tarlow D, Swersky K, Zemel RS, Adams RP, Frey BJ. Fast exact inference for recursive cardinality models Uncertainty in Artificial Intelligence - Proceedings of the 28th Conference, Uai 2012. 825-834. |
0.625 |
|
2012 |
Swersky K, Tarlow D, Adams RP, Zemel RS, Frey BJ. Probabilistic n-choose-κ models for classification and ranking Advances in Neural Information Processing Systems. 4: 3050-3058. |
0.617 |
|
2012 |
Volkovs MN, Zemel RS. Collaborative ranking with 17 parameters Advances in Neural Information Processing Systems. 3: 2294-2302. |
0.694 |
|
2012 |
Tarlow D, Adams RP, Zemel RS. Randomized optimum models for structured prediction Journal of Machine Learning Research. 22: 1221-1229. |
0.601 |
|
2011 |
Marlin BM, Zemel RS, Roweis ST, Slaney M. Recommender systems: Missing data and statistical model estimation Ijcai International Joint Conference On Artificial Intelligence. 2686-2691. DOI: 10.5591/978-1-57735-516-8/IJCAI11-447 |
0.603 |
|
2010 |
Schmah T, Yourganov G, Zemel RS, Hinton GE, Small SL, Strother SC. Comparing classification methods for longitudinal fMRI studies. Neural Computation. 22: 2729-62. PMID 20804386 DOI: 10.1162/Neco_A_00024 |
0.639 |
|
2009 |
Volkovs MN, Zemel RS. BoltzRank: Learning to maximize expected ranking gain Proceedings of the 26th International Conference On Machine Learning, Icml 2009. 1089-1096. DOI: 10.1145/1553374.1553513 |
0.739 |
|
2009 |
Schmah T, Hinton GE, Zemel RS, Small SL, Strother S. Generative versus discriminative training of RBMs for classification of fMRI images Advances in Neural Information Processing Systems 21 - Proceedings of the 2008 Conference. 1409-1416. |
0.629 |
|
2009 |
Volkovs MN, Zemel RS. BoltzRank: Learning to maximize expected ranking gain Proceedings of the 26th International Conference On Machine Learning, Icml 2009. 1089-1096. |
0.751 |
|
2008 |
Natarajan R, Huys QJ, Dayan P, Zemel RS. Encoding and decoding spikes for dynamic stimuli. Neural Computation. 20: 2325-60. PMID 18386986 DOI: 10.1162/neco.2008.01-07-436 |
0.422 |
|
2008 |
Klam F, Zemel RS, Pouget A. Population coding with motion energy filters: the impact of correlations. Neural Computation. 20: 146-75. PMID 18045004 DOI: 10.1162/neco.2008.20.1.146 |
0.528 |
|
2008 |
Meeds EW, Ross DA, Zemel RS, Roweis ST. Learning stick-figure models using nonparametric Bayesian priors over trees 26th Ieee Conference On Computer Vision and Pattern Recognition, Cvpr. DOI: 10.1109/CVPR.2008.4587559 |
0.666 |
|
2007 |
Huys QJ, Zemel RS, Natarajan R, Dayan P. Fast population coding. Neural Computation. 19: 404-41. PMID 17206870 DOI: 10.1162/neco.2007.19.2.404 |
0.381 |
|
2006 |
Ross DA, Osindero S, Zemel RS. Combining discriminative features to infer complex trajectories Acm International Conference Proceeding Series. 148: 761-768. DOI: 10.1145/1143844.1143940 |
0.735 |
|
2006 |
He X, Zemel RS, Mnih V. Topological map learning from outdoor image sequences Journal of Field Robotics. 23: 1091-1104. DOI: 10.1002/Rob.20170 |
0.693 |
|
2005 |
Marlin BM, Roweis ST, Zemel RS. Unsupervised learning with non-ignorable missing data Aistats 2005 - Proceedings of the 10th International Workshop On Artificial Intelligence and Statistics. 222-229. |
0.647 |
|
2005 |
Zemel RS, Huys QJM, Natarajan R, Dayan P. Probabilistic computation in spiking populations Advances in Neural Information Processing Systems. |
0.349 |
|
2004 |
Welling M, Zemel RS, Hinton GE. Probabilistic sequential independent components analysis. Ieee Transactions On Neural Networks / a Publication of the Ieee Neural Networks Council. 15: 838-49. PMID 15461077 DOI: 10.1109/Tnn.2004.828765 |
0.68 |
|
2003 |
Pouget A, Dayan P, Zemel RS. Inference and computation with population codes. Annual Review of Neuroscience. 26: 381-410. PMID 12704222 DOI: 10.1146/annurev.neuro.26.041002.131112 |
0.614 |
|
2003 |
Welling M, Zemel RS, Hinton GE. Self supervised boosting Advances in Neural Information Processing Systems. |
0.588 |
|
2002 |
Zemel RS, Behrmann M, Mozer MC, Bavelier D. Experience-dependent perceptual grouping and object-based attention. Journal of Experimental Psychology: Human Perception and Performance. 28: 202-217. DOI: 10.1037/0096-1523.28.1.202 |
0.569 |
|
2002 |
Zemel RS, Mozer MC, Behrmann M, Bavelier D. Experience-dependent perceptual grouping and object-based attention Journal of Experimental Psychology: Human Perception and Performance. 28: 202-217. DOI: 10.1037/0096-1523.28.1.202 |
0.581 |
|
2001 |
Zemel RS, Mozer MC. Localist attractor networks. Neural Computation. 13: 1045-64. PMID 11359644 DOI: 10.1162/08997660151134325 |
0.586 |
|
2000 |
Pouget A, Dayan P, Zemel R. Information processing with population codes. Nature Reviews. Neuroscience. 1: 125-32. PMID 11252775 DOI: 10.1038/35039062 |
0.591 |
|
2000 |
Behrmann M, Zemel RS, Mozer MC. Occlusion, symmetry, and object-based attention: reply to Saiki (2000). Journal of Experimental Psychology. Human Perception and Performance. 26: 1497-505. PMID 10946727 DOI: 10.1037//0096-1523.26.4.1497 |
0.579 |
|
2000 |
Zemel RS, Pillow J. Encoding multiple orientations in a recurrent network Neurocomputing. 32: 609-616. DOI: 10.1016/S0925-2312(00)00222-8 |
0.562 |
|
1999 |
Zemel RS, Dayan P. Distributional population codes and multiple motion models Advances in Neural Information Processing Systems. 174-180. |
0.369 |
|
1998 |
Behrmann M, Zemel RS, Mozer MC. Object-based attention and occlusion: evidence from normal participants and a computational model. Journal of Experimental Psychology. Human Perception and Performance. 24: 1011-36. PMID 9706708 DOI: 10.1037/0096-1523.24.4.1011 |
0.604 |
|
1998 |
Gray MS, Pouget A, Zemel RS, Nowlan SJ, Sejnowski TJ. Reliable disparity estimation through selective integration. Visual Neuroscience. 15: 511-28. PMID 9685204 DOI: 10.1017/S0952523898153129 |
0.601 |
|
1998 |
Zemel RS, Dayan P, Pouget A. Probabilistic interpretation of population codes. Neural Computation. 10: 403-30. PMID 9472488 |
0.612 |
|
1998 |
Zemel RS, Sejnowski TJ. A model for encoding multiple object motions and self-motion in area MST of primate visual cortex. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 18: 531-47. PMID 9412529 DOI: 10.1523/Jneurosci.18-01-00531.1998 |
0.366 |
|
1998 |
Behrmann M, Zemel RS, Mozer MC. Object-based attention and occlusion: Evidence from normal participants and a computational model. Journal of Experimental Psychology: Human Perception and Performance. 24: 1011-1036. DOI: 10.1037/0096-1523.24.4.1011 |
0.586 |
|
1997 |
Gray MS, Pouget A, Zemel RS, Nowlan SJ, Sejnowski TJ. Selective integration: A model for disparity estimation Advances in Neural Information Processing Systems. 866-872. |
0.517 |
|
1997 |
Zemel RS, Dayan P. Combining probabilistic population codes Ijcai International Joint Conference On Artificial Intelligence. 2: 1114-1119. |
0.349 |
|
1995 |
Dayan P, Hinton GE, Neal RM, Zemel RS. The Helmholtz machine. Neural Computation. 7: 889-904. PMID 7584891 DOI: 10.1162/neco.1995.7.5.889 |
0.763 |
|
1995 |
Dayan P, Zemel RS. Competition and multiple cause models Neural Computation. 7: 565-579. DOI: 10.1162/Neco.1995.7.3.565 |
0.382 |
|
1995 |
Zemel RS, Williams CKI, Mozer MC. Lending direction to neural networks Neural Networks. 8: 503-512. DOI: 10.1016/0893-6080(94)00094-3 |
0.6 |
|
1995 |
Zemel RS, Hinton GE. Learning population codes by minimizing description length Neural Computation. 7: 549-564. |
0.651 |
|
1992 |
Mozer MC, Zemel RS, Behrmann M, Williams CKI. Learning to Segment Images Using Dynamic Feature Binding Neural Computation. 4: 650-665. DOI: 10.1162/neco.1992.4.5.650 |
0.618 |
|
Show low-probability matches. |