Shigeto Furukawa - Publications

Affiliations: 
NTT Communication Science Labs 
Area:
Auditory system
Website:
http://www.brl.ntt.co.jp/cs/human/index.html

58 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2023 Koumura T, Terashima H, Furukawa S. Human-Like Modulation Sensitivity Emerging through Optimization to Natural Sound Recognition. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 43: 3876-3894. PMID 37185101 DOI: 10.1523/JNEUROSCI.2002-22.2023  0.6
2022 Otsuka S, Nakagawa S, Furukawa S. Expectations of the Timing and Intensity of a Stimulus Propagate to the Auditory Periphery through the Medial Olivocochlear Reflex. Cerebral Cortex (New York, N.Y. : 1991). PMID 35094068 DOI: 10.1093/cercor/bhac002  0.392
2020 Honda S, Ishikawa Y, Konno R, Imai E, Nomiyama N, Sakurada K, Koumura T, Kondo HM, Furukawa S, Fujii S, Nakatani M. Proximal Binaural Sound Can Induce Subjective Frisson. Frontiers in Psychology. 11: 316. PMID 32194479 DOI: 10.3389/Fpsyg.2020.00316  0.488
2020 Furukawa S, Terashima H, Koumura T, Tsukano H. Data-driven approaches for unveiling the neurophysiological functions of the auditory system Acoustical Science and Technology. 41: 63-66. DOI: 10.1250/Ast.41.63  0.592
2020 Otsuka S, Nakagawa S, Furukawa S. Relationship between characteristics of medial olivocochlear reflex and speech-in-noise-reception performance Acoustical Science and Technology. 41: 404-407. DOI: 10.1250/Ast.41.404  0.348
2020 Terashima H, Furukawa S. Examination of efficient coding model for auditory nerves during infant development Acoustical Science and Technology. 41: 351-354. DOI: 10.1250/Ast.41.351  0.546
2020 Koumura T, Terashima H, Furukawa S. Chimeric sounds with shuffled ``texture'' and ``content'' synthesized by a model of the auditory system Acoustical Science and Technology. 41: 337-340. DOI: 10.1250/Ast.41.337  0.642
2019 Otsuka S, Nakagawa S, Furukawa S. Relationship between cochlear mechanics and speech-in-noise reception performance. The Journal of the Acoustical Society of America. 146: EL265. PMID 31590549 DOI: 10.1121/1.5125008  0.392
2019 Zhao S, Chait M, Dick F, Dayan P, Furukawa S, Liao HI. Pupil-linked phasic arousal evoked by violation but not emergence of regularity within rapid sound sequences. Nature Communications. 10: 4030. PMID 31492881 DOI: 10.1038/S41467-019-12048-1  0.323
2019 Zhao S, Wai Yum N, Benjamin L, Benhamou E, Yoneya M, Furukawa S, Dick F, Slaney M, Chait M. Rapid ocular responses are modulated by bottom-up driven auditory salience. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. PMID 31391262 DOI: 10.1523/Jneurosci.0776-19.2019  0.467
2019 Koumura T, Terashima H, Furukawa S. Cascaded Tuning to Amplitude Modulation for Natural Sound Recognition. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. PMID 31092586 DOI: 10.1523/Jneurosci.2914-18.2019  0.677
2018 Liao HI, Yoneya M, Kashino M, Furukawa S. Pupillary dilation response reflects surprising moments in music. Journal of Eye Movement Research. 11. PMID 33828696 DOI: 10.16910/jemr.11.2.13  0.33
2018 Otsuka S, Nakagawa S, Furukawa S. A Preceding Sound Expedites Medial Olivocochlear Reflex Acta Acustica United With Acustica. 104: 804-808. DOI: 10.3813/Aaa.919228  0.444
2018 Koumura T, Furukawa S. Do Speech Contexts Induce Constancy of Material Perception Based on Impact Sound Under Reverberation? Acta Acustica United With Acustica. 104: 796-799. DOI: 10.3813/Aaa.919226  0.379
2018 Furukawa S, Onikura K, Kidani S, Kato M, Kitagawa N. Light-synchronized tapping task as an objective method for estimating auditory detection threshold Acoustical Science and Technology. 39: 30-36. DOI: 10.1250/Ast.39.30  0.318
2017 Koumura T, Furukawa S. Context-Dependent Effect of Reverberation on Material Perception from Impact Sound. Scientific Reports. 7: 16455. PMID 29184117 DOI: 10.1038/S41598-017-16651-4  0.423
2017 Altmann CF, Ueda R, Bucher B, Furukawa S, Ono K, Kashino M, Mima T, Fukuyama H. Trading of dynamic interaural time and level difference cues and its effect on the auditory motion-onset response measured with electroencephalography. Neuroimage. 159: 185-194. PMID 28756239 DOI: 10.1016/J.Neuroimage.2017.07.055  0.423
2017 Altmann CF, Ueda R, Furukawa S, Kashino M, Mima T, Fukuyama H. Auditory Mismatch Negativity in Response to Changes of Counter-Balanced Interaural Time and Level Differences. Frontiers in Neuroscience. 11: 387. PMID 28729820 DOI: 10.3389/Fnins.2017.00387  0.495
2017 Yamagishi S, Otsuka S, Furukawa S, Kashino M. Comparison of perceptual properties of auditory streaming between spectral and amplitude modulation domains. Hearing Research. PMID 28323019 DOI: 10.1016/J.Heares.2017.03.006  0.497
2016 Otsuka S, Furukawa S, Yamagishi S, Hirota K, Kashino M. Relation Between Cochlear Mechanics and Performance of Temporal Fine Structure-Based Tasks. Journal of the Association For Research in Otolaryngology : Jaro. PMID 27631508 DOI: 10.1007/S10162-016-0581-9  0.349
2016 Petsas T, Harrison J, Kashino M, Furukawa S, Chait M. The effect of distraction on change detection in crowded acoustic scenes. Hearing Research. PMID 27598040 DOI: 10.1016/J.Heares.2016.08.015  0.386
2016 Yamagishi S, Otsuka S, Furukawa S, Kashino M. Subcortical correlates of auditory perceptual organization in humans. Hearing Research. PMID 27371867 DOI: 10.1016/J.Heares.2016.06.016  0.5
2016 Liao HI, Yoneya M, Kidani S, Kashino M, Furukawa S. Human Pupillary Dilation Response to Deviant Auditory Stimuli: Effects of Stimulus Properties and Voluntary Attention. Frontiers in Neuroscience. 10: 43. PMID 26924959 DOI: 10.3389/Fnins.2016.00043  0.49
2016 Otsuka S, Tsuzaki M, Sonoda J, Tanaka S, Furukawa S. A Role of Medial Olivocochlear Reflex as a Protection Mechanism from Noise-Induced Hearing Loss Revealed in Short-Practicing Violinists. Plos One. 11: e0146751. PMID 26745634 DOI: 10.1371/Journal.Pone.0146751  0.355
2016 Furukawa S. Processing of temporal information in the auditory system Audiology Japan. 59: 615-622. DOI: 10.4295/AUDIOLOGY.59.615  0.306
2016 Liao H, Yoneya M, Kidani S, Barascud N, Zhao S, Chait M, Kashino M, Furukawa S. Detecting auditory changes by pupillary response The Journal of the Acoustical Society of America. 140: 3209-3209. DOI: 10.1121/1.4970100  0.309
2016 Yamagishi S, Otsuka S, Furukawa S, Kashino M. Comparison of brainstem frequency-following responses associated with auditory streaming based on spectral and temporal cues The Journal of the Acoustical Society of America. 140: 3158-3158. DOI: 10.1121/1.4969912  0.343
2015 Kanaya S, Fujisaki W, Nishida S, Furukawa S, Yokosawa K. Effects of Frequency Separation and Diotic/Dichotic Presentations on the Alternation Frequency Limits in Audition Derived from a Temporal Phase Discrimination Task. Perception. 44: 198-214. PMID 26561972 DOI: 10.1068/P7753  0.355
2015 Liao HI, Kidani S, Yoneya M, Kashino M, Furukawa S. Correspondences among pupillary dilation response, subjective salience of sounds, and loudness. Psychonomic Bulletin & Review. PMID 26163191 DOI: 10.3758/S13423-015-0898-0  0.442
2015 Furukawa S, Yamagishi S, Liao HI, Yoneya M, Otsuka S, Kashino M. Biological measures that reflect auditory perception Ntt Technical Review. 13.  0.334
2014 Altmann CF, Terada S, Kashino M, Goto K, Mima T, Fukuyama H, Furukawa S. Independent or integrated processing of interaural time and level differences in human auditory cortex? Hearing Research. 312: 121-7. PMID 24709274 DOI: 10.1016/J.Heares.2014.03.009  0.49
2014 Ochi A, Yamasoba T, Furukawa S. Factors that account for inter-individual variability of lateralization performance revealed by correlations of performance among multiple psychoacoustical tasks. Frontiers in Neuroscience. 8: 27. PMID 24592207 DOI: 10.3389/Fnins.2014.00027  0.357
2014 Otsuka S, Furukawa S, Yamagishi S, Hirota K, Kashino M. Interindividual variation of sensitivity to frequency modulation: its relation with click-evoked and distortion product otoacoustic emissions. Journal of the Association For Research in Otolaryngology : Jaro. 15: 175-86. PMID 24504749 DOI: 10.1007/S10162-013-0439-3  0.402
2013 Furukawa S, Washizawa S, Ochi A, Kashino M. How independent are the pitch and interaural-time-difference mechanisms that rely on temporal fine structure information? Advances in Experimental Medicine and Biology. 787: 91-9. PMID 23716213 DOI: 10.1007/978-1-4614-1590-9_11  0.371
2012 Furukawa S. Detection of simultaneous modulation of interaural time and level differences: effects of modulation rate and relative phase (L). The Journal of the Acoustical Society of America. 132: 1-4. PMID 22779449 DOI: 10.1121/1.4728199  0.303
2011 Miura T, Ifukube T, Furukawa S. Contribution of acoustical characteristics to auditory perception of silent object Conference Proceedings - Ieee International Conference On Systems, Man and Cybernetics. 1074-1079. DOI: 10.1109/ICSMC.2011.6083817  0.337
2011 Numata R, Furukawa S, Hatamura K, Sugimoto S, Horikawa J. Effects of irradiation of near-infrared laser on waveform and amplitude of auditory evoked potentials in the guinea pig Neuroscience Research. 71: e354. DOI: 10.1016/J.Neures.2011.07.1553  0.359
2008 Furukawa S. Detection of combined changes in interaural time and intensity differences: Segregated mechanisms in cue type and in operating frequency range? The Journal of the Acoustical Society of America. 123: 1602-17. PMID 18345848 DOI: 10.1121/1.2835226  0.364
2007 Maki K, Furukawa S. Auditory space map: Comparison of the three midbrain nuclei of gerbils Neuroscience Research. 58: S157. DOI: 10.1016/J.Neures.2007.06.646  0.357
2007 Furukawa S. Interaction between interaural time and intensity differences in the central auditory system: A psychophysical approach Neuroscience Research. 58: S156. DOI: 10.1016/J.Neures.2007.06.640  0.392
2006 Furukawa S, Maki K. Sensitivity of the auditory middle latency response of the guinea pig to interaural level and time differences. Hearing Research. 212: 48-57. PMID 16324809 DOI: 10.1016/J.Heares.2005.10.009  0.472
2005 Maki K, Furukawa S. Acoustical cues for sound localization by the Mongolian gerbil, Meriones unguiculatus. The Journal of the Acoustical Society of America. 118: 872-86. PMID 16158644 DOI: 10.1121/1.1944647  0.33
2005 Middlebrooks JC, Furukawa S, Christopher Stacker G, Mickey BJ. Distributed representation of sound-source location in the auditory cortex The Auditory Cortex: a Synthesis of Human and Animal Research. 225-240. DOI: 10.4324/9781410613066  0.74
2005 Maki K, Furukawa S. The responses of neurons in the gerbil inferior colliculus to virtual acoustic space stimuli Acoustical Science and Technology. 26: 82-84. DOI: 10.1250/Ast.26.82  0.385
2003 Furukawa S, Maki K, Harada T, Hirahara T. Responses of neurons in the inferior colliculus to a dynamic-level stimulus that simulates a sound source with varying distance Acoustical Science and Technology. 24: 318-321. DOI: 10.1250/Ast.24.318  0.41
2002 Furukawa S, Middlebrooks JC. Cortical representation of auditory space: information-bearing features of spike patterns. Journal of Neurophysiology. 87: 1749-62. PMID 11929896 DOI: 10.1152/Jn.00491.2001  0.662
2002 Middlebrooks JC, Xu L, Furukawa S, Macpherson EA. Cortical neurons that localize sounds. The Neuroscientist : a Review Journal Bringing Neurobiology, Neurology and Psychiatry. 8: 73-83. PMID 11843102 DOI: 10.1177/107385840200800112  0.77
2002 Furukawa S, Maki K, Kashino M, Riquimaroux H, Hirahara T. Temporal characteristics of neural sensitivities to the interaural phase difference in the inferior colliculus Acoustical Science and Technology. 23: 286-288. DOI: 10.1250/Ast.23.286  0.312
2001 Furukawa S, Middlebrooks JC. Sensitivity of auditory cortical neurons to locations of signals and competing noise sources. Journal of Neurophysiology. 86: 226-40. PMID 11431504 DOI: 10.1152/Jn.2001.86.1.226  0.652
2001 Furukawa S, Middlebrooks JC. Cortical codes for sound localization Acoustical Science and Technology. 22: 69-76. DOI: 10.1250/Ast.22.69  0.7
2000 Xu L, Furukawa S, Middlebrooks JC. Cortical mechanisms for auditory spatial illusions. Acta Oto-Laryngologica. 120: 263-6. PMID 11603787 DOI: 10.1080/000164800750001062  0.721
2000 Arenberg JG, Furukawa S, Middlebrooks JC. Auditory cortical images of tones and noise bands. Journal of the Association For Research in Otolaryngology : Jaro. 1: 183-94. PMID 11545145 DOI: 10.1007/S101620010036  0.677
2000 Furukawa S, Xu L, Middlebrooks JC. Coding of sound-source location by ensembles of cortical neurons. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 20: 1216-28. PMID 10648726 DOI: 10.1523/Jneurosci.20-03-01216.2000  0.684
1999 Xu L, Furukawa S, Middlebrooks JC. Auditory cortical responses in the cat to sounds that produce spatial illusions. Nature. 399: 688-91. PMID 10385120 DOI: 10.1038/21424  0.714
1998 Xu L, Furukawa S, Middlebrooks JC. Sensitivity to sound-source elevation in nontonotopic auditory cortex. Journal of Neurophysiology. 80: 882-94. PMID 9705475 DOI: 10.1152/Jn.1998.80.2.882  0.717
1997 Furukawa S, Moore BC. Effect of the relative phase of amplitude modulation on the detection of modulation on two carriers. The Journal of the Acoustical Society of America. 102: 3657-64. PMID 9407657 DOI: 10.1121/1.420152  0.481
1997 Furukawa S, Moore BC. Dependence of frequency modulation detection on frequency modulation coherence across carriers: effects of modulation rate, harmonicity, and roving of the carrier frequencies. The Journal of the Acoustical Society of America. 101: 1632-43. PMID 9069630 DOI: 10.1121/1.418147  0.459
1996 Furukawa S, Moore BC. Across-channel processes in frequency modulation detection. The Journal of the Acoustical Society of America. 100: 2299-311. PMID 8865637 DOI: 10.1121/1.417939  0.488
Show low-probability matches.