David Blair - Publications

Affiliations: 
University of Utah, Salt Lake City, UT 
Area:
Microbiology Biology, Molecular Biology, Biochemistry

52 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2020 Wheatley P, Gupta S, Pandini A, Chen Y, Petzold CJ, Ralston CY, Blair DF, Khan S. Allosteric Priming of E. coli CheY by the Flagellar Motor Protein FliM. Biophysical Journal. PMID 32891187 DOI: 10.1016/J.Bpj.2020.08.009  0.385
2018 Ward E, Kim EA, Panushka J, Botelho T, Meyer T, Kearns DB, Ordal G, Blair DF. Organization of the flagellar switch complex of . Journal of Bacteriology. PMID 30455280 DOI: 10.1128/JB.00626-18  0.317
2017 Ward E, Renault TT, Kim EA, Erhardt M, Hughes KT, Blair DF. Type-III Secretion Pore Formed by Flagellar Protein FliP. Molecular Microbiology. PMID 29076571 DOI: 10.1111/mmi.13870  0.302
2017 Kim EA, Panushka J, Meyer T, Ide N, Carlisle R, Baker S, Blair DF. Biogenesis of the flagellar switch complex in Escherichia coli: Formation of sub-complexes independently of the basal-body MS-ring. Journal of Molecular Biology. PMID 28625846 DOI: 10.1016/j.jmb.2017.06.006  0.369
2017 Erhardt M, Wheatley P, Kim EA, Hirano T, Zhang Y, Sarkar MK, Hughes KT, Blair DF. Mechanism of type-III protein secretion: Regulation of FlhA conformation by a functionally critical charged-residue cluster. Molecular Microbiology. PMID 28106310 DOI: 10.1111/mmi.13623  0.365
2016 Lynch MJ, Levenson R, Kim EA, Sircar R, Blair DF, Dahlquist FW, Crane BR. Co-Folding of a FliF-FliG Split Domain Forms the Basis of the MS:C Ring Interface within the Bacterial Flagellar Motor. Structure (London, England : 1993). PMID 28089452 DOI: 10.1016/J.Str.2016.12.006  0.361
2015 Kim EA, Blair DF. Function of the Histone-Like Protein H-NS in Motility of Escherichia coli: Multiple Regulatory Roles Rather than Direct Action at the Flagellar Motor. Journal of Bacteriology. 197: 3110-20. PMID 26195595 DOI: 10.1128/JB.00309-15  0.344
2015 Boschert R, Adler FR, Blair DF. Loose coupling in the bacterial flagellar motor. Proceedings of the National Academy of Sciences of the United States of America. 112: 4755-60. PMID 25825730 DOI: 10.1073/Pnas.1419955112  0.406
2011 Paul K, Brunstetter D, Titen S, Blair DF. A molecular mechanism of direction switching in the flagellar motor of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America. 108: 17171-6. PMID 21969567 DOI: 10.1073/pnas.1110111108  0.424
2011 Paul K, Carlquist WC, Blair DF. Adjusting the spokes of the flagellar motor with the DNA-binding protein H-NS. Journal of Bacteriology. 193: 5914-22. PMID 21890701 DOI: 10.1128/JB.05458-11  0.368
2011 Paul K, Gonzalez-Bonet G, Bilwes AM, Crane BR, Blair D. Architecture of the flagellar rotor. The Embo Journal. 30: 2962-71. PMID 21673656 DOI: 10.1038/Emboj.2011.188  0.495
2010 Sarkar MK, Paul K, Blair D. Chemotaxis signaling protein CheY binds to the rotor protein FliN to control the direction of flagellar rotation in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America. 107: 9370-5. PMID 20439729 DOI: 10.1073/pnas.1000935107  0.357
2010 Paul K, Nieto V, Carlquist WC, Blair DF, Harshey RM. The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a "backstop brake" mechanism. Molecular Cell. 38: 128-39. PMID 20346719 DOI: 10.1016/J.Molcel.2010.03.001  0.376
2010 Sarkar MK, Paul K, Blair DF. Subunit organization and reversal-associated movements in the flagellar switch of Escherichia coli. The Journal of Biological Chemistry. 285: 675-84. PMID 19858188 DOI: 10.1074/jbc.M109.068676  0.328
2008 Kim EA, Price-Carter M, Carlquist WC, Blair DF. Membrane segment organization in the stator complex of the flagellar motor: implications for proton flow and proton-induced conformational change. Biochemistry. 47: 11332-9. PMID 18834143 DOI: 10.1021/bi801347a  0.449
2007 Brown PN, Terrazas M, Paul K, Blair DF. Mutational analysis of the flagellar protein FliG: sites of interaction with FliM and implications for organization of the switch complex. Journal of Bacteriology. 189: 305-12. PMID 17085573 DOI: 10.1128/Jb.01281-06  0.657
2006 Park SY, Lowder B, Bilwes AM, Blair DF, Crane BR. Structure of FliM provides insight into assembly of the switch complex in the bacterial flagella motor. Proceedings of the National Academy of Sciences of the United States of America. 103: 11886-91. PMID 16882724 DOI: 10.1073/Pnas.0602811103  0.334
2006 Paul K, Harmon JG, Blair DF. Mutational analysis of the flagellar rotor protein FliN: identification of surfaces important for flagellar assembly and switching. Journal of Bacteriology. 188: 5240-8. PMID 16816196 DOI: 10.1128/JB.00110-06  0.309
2006 Paul K, Blair DF. Organization of FliN subunits in the flagellar motor of Escherichia coli. Journal of Bacteriology. 188: 2502-11. PMID 16547037 DOI: 10.1128/JB.188.7.2502-2511.2006  0.302
2006 Yakushi T, Yang J, Fukuoka H, Homma M, Blair DF. Roles of charged residues of rotor and stator in flagellar rotation: comparative study using H+-driven and Na+-driven motors in Escherichia coli. Journal of Bacteriology. 188: 1466-72. PMID 16452430 DOI: 10.1128/JB.188.4.1466-1472.2006  0.434
2005 Lowder BJ, Duyvesteyn MD, Blair DF. FliG subunit arrangement in the flagellar rotor probed by targeted cross-linking. Journal of Bacteriology. 187: 5640-7. PMID 16077109 DOI: 10.1128/JB.187.16.5640-5647.2005  0.379
2005 Brown PN, Mathews MA, Joss LA, Hill CP, Blair DF. Crystal structure of the flagellar rotor protein FliN from Thermotoga maritima. Journal of Bacteriology. 187: 2890-902. PMID 15805535 DOI: 10.1128/Jb.187.8.2890-2902.2005  0.648
2005 Yakushi T, Yane J, Fukuoka H, Homma M, Blair D. 3P201 Role of the charged residues in the rotor and stator of a Na^+-coupling flagellar motor in Escherichia coli Seibutsu Butsuri. 45: S254. DOI: 10.2142/Biophys.45.S254_1  0.425
2004 Kojima S, Blair DF. The bacterial flagellar motor: structure and function of a complex molecular machine. International Review of Cytology. 233: 93-134. PMID 15037363 DOI: 10.1016/S0074-7696(04)33003-2  0.501
2004 Braun TF, Al-Mawsawi LQ, Kojima S, Blair DF. Arrangement of core membrane segments in the MotA/MotB proton-channel complex of Escherichia coli. Biochemistry. 43: 35-45. PMID 14705929 DOI: 10.1021/Bi035406D  0.699
2004 Kojima S, Blair DF. Solubilization and purification of the MotA/MotB complex of Escherichia coli. Biochemistry. 43: 26-34. PMID 14705928 DOI: 10.1021/bi035405l  0.408
2003 Blair DF. Flagellar movement driven by proton translocation. Febs Letters. 545: 86-95. PMID 12788496 DOI: 10.1016/S0014-5793(03)00397-1  0.482
2002 Brown PN, Hill CP, Blair DF. Crystal structure of the middle and C-terminal domains of the flagellar rotor protein FliG. The Embo Journal. 21: 3225-34. PMID 12093724 DOI: 10.1093/Emboj/Cdf332  0.625
2001 Braun TF, Blair DF. Targeted disulfide cross-linking of the MotB protein of Escherichia coli: evidence for two H(+) channels in the stator Complex. Biochemistry. 40: 13051-9. PMID 11669643 DOI: 10.1021/Bi011264G  0.742
2001 Kojima S, Blair DF. Conformational change in the stator of the bacterial flagellar motor. Biochemistry. 40: 13041-50. PMID 11669642 DOI: 10.1021/bi011263o  0.455
1999 Lloyd SA, Whitby FG, Blair DF, Hill CP. Structure of the C-terminal domain of FliG, a component of the rotor in the bacterial flagellar motor. Nature. 400: 472-5. PMID 10440379 DOI: 10.1038/22794  0.484
1999 Braun TF, Poulson S, Gully JB, Empey JC, Van Way S, Putnam A, Blair DF. Function of proline residues of MotA in torque generation by the flagellar motor of Escherichia coli. Journal of Bacteriology. 181: 3542-51. PMID 10348868 DOI: 10.1128/Jb.181.11.3542-3551.1999  0.755
1998 Zhou J, Lloyd SA, Blair DF. Electrostatic interactions between rotor and stator in the bacterial flagellar motor. Proceedings of the National Academy of Sciences of the United States of America. 95: 6436-41. PMID 9600984 DOI: 10.1073/pnas.95.11.6436  0.461
1998 Zhou J, Sharp LL, Tang HL, Lloyd SA, Billings S, Braun TF, Blair DF. Function of protonatable residues in the flagellar motor of Escherichia coli: a critical role for Asp 32 of MotB. Journal of Bacteriology. 180: 2729-35. PMID 9573160 DOI: 10.1128/Jb.180.10.2729-2735.1998  0.764
1998 Mathews MAA, Tang HL, Blair DF. Domain Analysis of the FliM Protein ofEscherichia coli Journal of Bacteriology. 180: 5580-5590. DOI: 10.1128/jb.180.21.5580-5590.1998  0.33
1998 Zhou J, Sharp LL, Tang HL, Lloyd SA, Billings S, Braun TF, Blair DF. Function of Protonatable Residues in the Flagellar Motor of Escherichia coli: a Critical Role for Asp 32 of MotB Journal of Bacteriology. 180: 2729-2735. DOI: 10.1128/jb.180.10.2729-2735.1998  0.764
1997 Zhou J, Blair DF. Residues of the cytoplasmic domain of MotA essential for torque generation in the bacterial flagellar motor. Journal of Molecular Biology. 273: 428-39. PMID 9344750 DOI: 10.1006/jmbi.1997.1316  0.428
1997 Lloyd SA, Blair DF. Charged residues of the rotor protein FliG essential for torque generation in the flagellar motor of Escherichia coli. Journal of Molecular Biology. 266: 733-44. PMID 9102466 DOI: 10.1006/jmbi.1996.0836  0.442
1996 Tang H, Braun TF, Blair DF. Motility protein complexes in the bacterial flagellar motor. Journal of Molecular Biology. 261: 209-21. PMID 8757288 DOI: 10.1006/Jmbi.1996.0453  0.743
1996 Blair DF. How bacteria sense and swim. Annual Review of Microbiology. 49: 489-522. PMID 8561469 DOI: 10.1146/annurev.mi.49.100195.002421  0.314
1996 Lloyd SA, Tang H, Wang X, Billings S, Blair DF. Torque generation in the flagellar motor of Escherichia coli: evidence of a direct role for FliG but not for FliM or FliN. Journal of Bacteriology. 178: 223-31. PMID 8550421 DOI: 10.1128/jb.178.1.223-231.1996  0.454
1995 Tang H, Billings S, Wang X, Sharp L, Blair DF. Regulated underexpression and overexpression of the FliN protein of Escherichia coli and evidence for an interaction between FliN and FliM in the flagellar motor. Journal of Bacteriology. 177: 3496-503. PMID 7768859 DOI: 10.1128/jb.177.12.3496-3503.1995  0.4
1995 Tang H, Blair DF. Regulated underexpression of the FliM protein of Escherichia coli and evidence for a location in the flagellar motor distinct from the MotA/MotB torque generators. Journal of Bacteriology. 177: 3485-95. PMID 7768858 DOI: 10.1128/jb.177.12.3485-3495.1995  0.394
1995 Sharp LL, Zhou J, Blair DF. Features of MotA proton channel structure revealed by tryptophan-scanning mutagenesis. Proceedings of the National Academy of Sciences of the United States of America. 92: 7946-50. PMID 7644518 DOI: 10.1073/pnas.92.17.7946  0.372
1995 Zhou J, Fazzio RT, Blair DF. Membrane Topology of the MotA Protein ofEscherichia coil Journal of Molecular Biology. 251: 237-242. PMID 7643400 DOI: 10.1006/Jmbi.1995.0431  0.315
1995 Sharp LL, Zhou J, Blair DF. Tryptophan-scanning mutagenesis of MotB, an integral membrane protein essential for flagellar rotation in Escherichia coli. Biochemistry. 34: 9166-71. PMID 7619816 DOI: 10.1021/bi00028a028  0.336
1994 Blair DF. Testing the limits of flagellar motors. Biophysical Journal. 65: 1751-2. PMID 8298005 DOI: 10.1016/S0006-3495(93)81229-3  0.32
1991 Blair DF, Kim DY, Berg HC. Mutant MotB proteins in Escherichia coli. Journal of Bacteriology. 173: 4049-55. PMID 2061285 DOI: 10.1128/jb.173.13.4049-4055.1991  0.462
1991 Blair DF, Berg HC. Mutations in the MotA protein of Escherichia coli reveal domains critical for proton conduction. Journal of Molecular Biology. 221: 1433-42. PMID 1719217 DOI: 10.1016/0022-2836(91)90943-Z  0.363
1991 Blair DF. The bacterial rotary motor Nanotechnology. 2: 123-133. DOI: 10.1088/0957-4484/2/3/004  0.372
1990 Blair DF, Berg HC. The MotA protein of E. coli is a proton-conducting component of the flagellar motor. Cell. 60: 439-49. PMID 2154333 DOI: 10.1016/0092-8674(90)90595-6  0.389
1988 Blair DF, Berg HC. Restoration of torque in defective flagellar motors Science. 242: 1678-1681. PMID 2849208 DOI: 10.1126/science.2849208  0.391
Show low-probability matches.