Year |
Citation |
Score |
2024 |
Idrees S, Manookin MB, Rieke F, Field GD, Zylberberg J. Biophysical neural adaptation mechanisms enable artificial neural networks to capture dynamic retinal computation. Nature Communications. 15: 5957. PMID 39009568 DOI: 10.1038/s41467-024-50114-5 |
0.653 |
|
2024 |
Tang D, Zylberberg J, Jia X, Choi H. Stimulus type shapes the topology of cellular functional networks in mouse visual cortex. Nature Communications. 15: 5753. PMID 38982078 DOI: 10.1038/s41467-024-49704-0 |
0.516 |
|
2023 |
Tang D, Zylberberg J, Jia X, Choi H. Stimulus-dependent functional network topology in mouse visual cortex. Biorxiv : the Preprint Server For Biology. PMID 37461471 DOI: 10.1101/2023.07.03.547364 |
0.516 |
|
2020 |
Ruda K, Zylberberg J, Field GD. Ignoring correlated activity causes a failure of retinal population codes. Nature Communications. 11: 4605. PMID 32929073 DOI: 10.1038/S41467-020-18436-2 |
0.437 |
|
2020 |
Federer C, Xu H, Fyshe A, Zylberberg J. Improved object recognition using neural networks trained to mimic the brain's statistical properties. Neural Networks : the Official Journal of the International Neural Network Society. 131: 103-114. PMID 32771841 DOI: 10.1016/J.Neunet.2020.07.013 |
0.327 |
|
2020 |
Cafaro J, Zylberberg J, Field G. Global motion processing by populations of direction-selective retinal ganglion cells. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. PMID 32561674 DOI: 10.1523/Jneurosci.0564-20.2020 |
0.374 |
|
2019 |
Pruszynski JA, Zylberberg J. The language of the brain: real-world neural population codes. Current Opinion in Neurobiology. 58: 30-36. PMID 31326721 DOI: 10.1016/J.Conb.2019.06.005 |
0.356 |
|
2018 |
Cayco-Gajic NA, Zylberberg J, Shea-Brown E. A Moment-Based Maximum Entropy Model for Fitting Higher-Order Interactions in Neural Data. Entropy (Basel, Switzerland). 20. PMID 33265579 DOI: 10.3390/e20070489 |
0.639 |
|
2018 |
Cayco-Gajic N, Zylberberg J, Shea-Brown E. A Moment-Based Maximum Entropy Model for Fitting Higher-Order Interactions in Neural Data Entropy. 20: 489. DOI: 10.3390/E20070489 |
0.608 |
|
2017 |
Zylberberg J, Strowbridge BW. Mechanisms of Persistent Activity in Cortical Circuits: Possible Neural Substrates for Working Memory. Annual Review of Neuroscience. 40: 603-627. PMID 28772102 DOI: 10.1146/Annurev-Neuro-070815-014006 |
0.326 |
|
2017 |
Zylberberg J, Pouget A, Latham PE, Shea-Brown E. Robust information propagation through noisy neural circuits. Plos Computational Biology. 13: e1005497. PMID 28419098 DOI: 10.1371/Journal.Pcbi.1005497 |
0.677 |
|
2016 |
Zylberberg J, Cafaro J, Turner MH, Shea-Brown E, Rieke F. Direction-Selective Circuits Shape Noise to Ensure a Precise Population Code. Neuron. 89: 369-83. PMID 26796691 DOI: 10.1016/J.Neuron.2015.11.019 |
0.68 |
|
2015 |
Zylberberg J, Shea-Brown E. Input nonlinearities can shape beyond-pairwise correlations and improve information transmission by neural populations. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics. 92: 062707. PMID 26764727 DOI: 10.1103/Physreve.92.062707 |
0.687 |
|
2015 |
Zylberberg J, Hyde RA, Strowbridge BW. Dynamics of robust pattern separability in the hippocampal dentate gyrus. Hippocampus. PMID 26482936 DOI: 10.1002/Hipo.22546 |
0.341 |
|
2015 |
Cayco-Gajic NA, Zylberberg J, Shea-Brown E. Triplet correlations among similarly tuned cells impact population coding. Frontiers in Computational Neuroscience. 9: 57. PMID 26042024 DOI: 10.3389/Fncom.2015.00057 |
0.696 |
|
2015 |
Cayco-Gajic NA, Zylberberg J, Shea-Brown E. Triplet correlations among similarly tuned cells impact population coding Frontiers in Computational Neuroscience. 9. DOI: 10.3389/fncom.2015.00057 |
0.625 |
|
2015 |
Cayco-Gajic A, Zylberberg J, Shea-Brown E. Curvature of dendritic nonlinearities modulates higher-order spiking correlations Bmc Neuroscience. 16. DOI: 10.1186/1471-2202-16-S1-P227 |
0.652 |
|
2015 |
Zylberberg J, Cafaro J, Turner M, Rieke F, Shea-Brown E. Limited range correlations, when modulated by firing rate, can substantially improve neural population coding Bmc Neuroscience. 16. DOI: 10.1186/1471-2202-16-S1-O16 |
0.695 |
|
2014 |
Hu Y, Zylberberg J, Shea-Brown E. The sign rule and beyond: boundary effects, flexibility, and noise correlations in neural population codes. Plos Computational Biology. 10: e1003469. PMID 24586128 DOI: 10.1371/Journal.Pcbi.1003469 |
0.694 |
|
2014 |
Zylberberg J, Shea-Brown E. When does recurrent connectivity improve neural population coding? Bmc Neuroscience. 15. DOI: 10.1186/1471-2202-15-S1-P49 |
0.702 |
|
2013 |
Zylberberg J, DeWeese MR. Sparse coding models can exhibit decreasing sparseness while learning sparse codes for natural images. Plos Computational Biology. 9: e1003182. PMID 24009489 DOI: 10.1371/Journal.Pcbi.1003182 |
0.702 |
|
2013 |
King PD, Zylberberg J, DeWeese MR. Inhibitory interneurons decorrelate excitatory cells to drive sparse code formation in a spiking model of V1. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 33: 5475-85. PMID 23536063 DOI: 10.1523/Jneurosci.4188-12.2013 |
0.706 |
|
2013 |
Marzen SE, Zylberberg J, DeWeese MR. How efficient coding of binocular disparity statistics in the primary visual cortex influences eye rotation strategy Bmc Neuroscience. 14. DOI: 10.1186/1471-2202-14-S1-O7 |
0.727 |
|
2013 |
Zylberberg J, Turner M, Hu Y, Cafaro J, Schwartz G, Rieke F, Shea-Brown E. Consistency requirements determine optimal noise correlations in neural populations Bmc Neuroscience. 14. DOI: 10.1186/1471-2202-14-S1-F1 |
0.68 |
|
2013 |
Marzen S, Zylberberg J, DeWeese M. Modified visuomotor optimization theory to explain Listing's Law Journal of Vision. 13: 519-519. DOI: 10.1167/13.9.519 |
0.631 |
|
2012 |
Zylberberg J, Pfau D, Deweese MR. Dead leaves and the dirty ground: low-level image statistics in transmissive and occlusive imaging environments. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics. 86: 066112. PMID 23368009 DOI: 10.1103/Physreve.86.066112 |
0.614 |
|
2011 |
Zylberberg J, Murphy JT, DeWeese MR. A sparse coding model with synaptically local plasticity and spiking neurons can account for the diverse shapes of V1 simple cell receptive fields. Plos Computational Biology. 7: e1002250. PMID 22046123 DOI: 10.1371/Journal.Pcbi.1002250 |
0.693 |
|
2011 |
Zylberberg J, Deweese MR. How should prey animals respond to uncertain threats? Frontiers in Computational Neuroscience. 5: 20. PMID 21559347 DOI: 10.3389/Fncom.2011.00020 |
0.611 |
|
Show low-probability matches. |